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1. Introduction 

This report presents first results from the model-based assessment of the impacts of gaps in 

observing system current non-satellite measurement capabilities. By making first results 

available during the course of the task, we hope to gain insights of the possible impacts of 

these gaps and build upon our knowledge of and ability to characterize the quality of EO 

measurements through further collaboration within and across this task group and work 

package (WP). This report is organized by the contributions of each of the groups involved. 

In Section 2, we briefly summarize key questions and related contributions by each group. 

For each contribution, we briefly outline the approach used, including a description of the 

model system applied, and present and discuss the results achieved so far, together with an 

outlook of next steps as part of this task in Section 3. Overall conclusions to date and 

recommendations for future activities are given in Section 4. 

 

2. Background 

As outlined in our previous report on Modelling Studies of the Impacts of Gaps (GAIA-CLIM 

Deliverable Report D1.2), this model based assessment of gaps in observing system 

capabilities complements and extends the remaining activities within GAIA-CLIM work 

package 1 by addressing questions such as: 

� Where the in-situ capabilities are noted to have gaps, or to lack a transfer standard, 

then do these need to be filled by additional in-situ data, or is a model-based 

interpolation or analysis based field estimate a plausible alternative means of EO 

sensor characterisation? 

� Where, based upon our understanding of atmospheric processes, would additional 

measurements add most interpretative value to EO sensor characterisation? 

� Does measurement frequency, scheduling or quality matter more? What would be 

the trade-off between these in terms of our ability to characterise EO sensor 

performance? 

� Do fewer measurements in fewer locations with lower uncertainties have benefits 

over more measurements at more locations but with higher uncertainties? 

Within the planned work of Task 1.5 there is a clear emphasis on the first two questions. 

Ultimately, progress in Task 1.5 may enable us to also address the last two questions, but 

this is less clear at present. 

In line with the GAIA-CLIM Gap Assessment and Impacts Document (GAID) we categorize 

known gaps into seven generic gap types: 

� coverage (spatiotemporal) 

� vertical resolution (profile, per troposphere/stratosphere altitude domain) 

� uncertainty (per observation, uncertainty budget, calibration) 

� uncertainty (in relation to comparator measures, representativeness) 
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� technical (formats, conventions etc) 

� governance (harmonisation procedures, 24/7, etc ) 

� parameter (need for auxiliary information/parameters). 

In order to meet these project goals specified in the preceding paragraphs, a number of 

modelling groups, each representing expertise in a key area relevant for GAIA-CLIM, have 

been incorporated into Task 1.5 activities. The groups involved and model systems used 

have been selected to cover a wide range of topics and GAIA-CLIM target ECVs, including 

experts in greenhouse gas modelling, air quality and inversion modelling, aerosol modelling 

and chemistry climate modelling. Each of the groups is actively involved in further 

international modelling activities (e.g., such as the WCRP-SPARC / IGAC Chemistry Climate 

Modelling Initiative, CCMI). 

� Max Planck Institute for Biogeochemistry contributes with their expertise in 

modelling of greenhouse gases (CO2 and CH4) and inverse modelling.  

� Likewise, BIRA contribute with modelling of air quality and short lived climate forcing 

gases (in particular CO) and inverse modelling of their sources and sinks, such as 

investigation of the hydroxyl radical (OH) as a sink for CO.  

� FMI contribute with aerosol climate modelling and KIT with chemistry climate 

modelling to address the climate impact on ozone and related trace gases.  

� More recently, ECMWF started work on addressing gaps in geographical coverage of 

temperature and humidity observations by analyzing the observations minus short 

term forecast (O-B) statistics.  

� A specific (in kind) KNMI contribution to this WP is to pass through the latest 

relevant information on validation results from MACC/CAMS which are documented 

in 3-monthly MACC/CAMS validation reports published here 

http://atmosphere.copernicus.eu/validation. 

In terms of the gap type characterization, most of the modelling work within this task 

addresses gaps in coverage and representativeness, as well as gaps in available parameters, 

e.g. with respect to multivariate dependencies. 

 

3. Definition of model simulations and preliminary results  
In this section, the model simulations that either have been or are to be performed or used 

are described, together with an outline of the specific analyses to date / foreseen. The 

presentation is organized by the topics to be addressed, together with the specific model 

systems to be used: (1) Greenhouse gases CO2 and CH4, (2) air quality and short lived climate 

forcing gases (CO), (3) aerosols, (4) ozone and related trace gases and (5) assessing 

geographical gaps for reference temperature and humidity. Table 1 summarizes the topics 

addressed and models involved, including an additional model, (5) from the previous 

modelling study of the impacts of gaps as part of GAIA-CLIM D1.2. 
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Table 1:  Updated topics addressed in Task 1.5 by specific models, the respective ground-

based observational networks addressed, and the institutions responsible for this part of the 

work. 

 Model Technique Network 

addressed 

Institution 

Greenhouse gases, 

CO2, CH4 

TM3 Global tracer transport 

model 

TCCON MPI BGG 

Air quality, CO IMAGESv2 Inverse modelling TCCON BIRA 

Aerosols ECHAM-

HAMMOZ 

Aerosol Climate model AERONET FMI 

Ozone and related 

trace gases 

EMAC (ECHAM5-

MESSy2) 

Chemistry Climate 

model 

NDACC KIT 

Temperature and 

humidity 

ECMWF IFS Numerical Weather 

Prediction  

GRUAN ECMWF 

 

 

3.1 Greenhouse gases, CO2 and CH4 (MPI BGC) 

3.1.1 Scope of the assessment  

TCCON (Total Carbon Column Observing Network, see Wunch et al., 2011), a distributed 

network of ground-based Fourier Transform Infrared (FTIR) spectrometers, is currently the 

backbone of the validation of spaceborne column-integrated measurements of carbon 

dioxide and methane (hereafter XCO2 and XCH4, respectively). The locations of the TCCON 

sites are shown in Figure 1.1. This assessment attempts to quantify over what spatial and 

temporal scales these measurements are representative of the atmospheric composition 

through the use of sophisticated collocation criteria using modelled fields to represent 

variability due to both transport and fluxes, following the approach of Guerlet et al. (2013). 

Furthermore, these colocation criteria are applied to GOSAT retrievals to assess how well 

the TCCON-GOSAT colocations sample the geophysical parameter space that constitutes the 

basis of the currently implemented bias correction schemes. 

The first part of this study defines the representativeness of the validation network in space 

and time, which addresses the first gap type listed in Section 2, with the region of 

representativeness influenced by the uncertainty on the measurements, which is related to 

the fourth gap type. The second part of the study, the analysis in parameter space, relates to 

the seventh gap type listed.  
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Figure 1.1. The location of past, current, and planned TCCON sites, as of 2014. Only 

operational and sites marked as “future sites” are considered in this analysis. 

3.1.2 Model used and planned simulations  

The original plan had been to use forward simulations of the TM3 tracer transport model at 

1.125 degree resolution. This is a higher resolution than that at which we are able to 

optimize our fluxes through atmospheric inversion (typically carried out at ~4 x 5  degree 

resolution), so this would have involved some mismatch between the scales of the fluxes 

and the scale of the transport. Because of this, we opted to instead use optimized 3D fields 

of carbon dioxide and methane at 1 degree spatial, 3-hourly temporal resolution that are 

available through the Copernicus Atmosphere Monitoring Service for this study. These runs 

are performed using the Integrated Forecasting System (IFS) (Agustí-Panareda et al. 2014, S. 

Massart et al. 2014), a comprehensive, state of the art numerical weather prediction (NWP) 

and earth-system model developed at the European Centre for Medium Range Weather 

Forecasts (ECMWF). It models the dynamics of the atmosphere and the physical processes 

that influence the weather, including atmospheric composition, in addition, it uses data 

assimilation in order to make better predictions about the state of the atmosphere. 

3.1.3 Planned analysis 

The collocation method used to determine the region of representativeness around each 

TCCON site is based on Guerlet et al. (2013). This is done by analysing the optimized fields of 

XCO2 (and XCH4) at 1 degree resolution, and determining regions over which the total 

column value is not expected to vary more than a given threshold amount (e.g. ±0.5 ppm for 

XCO2). What is important to note, is that the exact value of the modelled field is not critical, 

and the value measured and the value modelled are not directly compared. Rather, the 

variability of the modelled field is assessed. This takes into account variability related to the 

heterogeneity of the fluxes in the near-field and the impact this has on the total column, as 

well as synoptic variability through transport. 

An example is shown for the TCCON station at Bialystok in Figure 1.2. The upper left panel 

shows the simulated XCO2 fields for one three-hourly timestep within the geographic range 

±7.5 degrees latitude, ±22.5 degrees longitude. The upper right shows all the regions that 
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match the simulated XCO2 value at Bialystok within the ±0.5 ppm threshold, and the lower 

left shows the effect of filtering such that the matches are contiguous. The lower right panel 

shows the normalized cumulative matches for one full month, in this case April 2010, where 

a value of one implies that the value matched for all time steps throughout the month. 

This method defines the spatial representativeness of the TCCON network. These “potential 

colocation” regions are then confronted with GOSAT measurements from 2010, and the 

soundings are sorted into those that are potentially collocated with the area of influence of 

the TCCON network and those that are not. The representativeness of the colocations in 

terms of the geophysical parameters used for empirical bias correction is then assessed. 

Table 1.1 presents a sampling of some of the geophysical parameters that have been used 

for empirical bias corrections for various satellite XCO2 retrieval products. 

 

   

 

 

Figure 1.2. A step-by-step example of the colocation method based on Guerlet et al. (2013). 

The upper left panel shows the modelled XCO2 field for ±7.5 degrees latitude and ±22.5 

degrees longitude around Bialystok. The upper right shows all pixels that match the value at 

the TCCON site within 0.5 ppm, and the lower left imposes the criterion that all matches 

must be contiguous in space. The lower right panel shows the normalized fluxes over one 

month (April, 2010). 
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Table 1.1. A selection of XCO2 retrievals and the geophysical parameters (not defined here) 

which have been empirically found to be significant for multivariate bias corrections. 

Sensor Retrieval Version Parameters used 

SCIAMACHY BESD 2.01.01 Albedo_P0_O2, albedo_P0_CO2, 

albedo_P1_CO2, albedo_P2_CO2, FWHM_CO2 

(nm), CWP, APS, Δps, height, SZA, SVA  

TANSO (GOSAT) SRFP 2.3.7 Retrieved aerosol size parameter α  

TANSO (GOSAT) OCFP 6.1 SZA, albedo_band_1/albedo_band_3  

TANSO (GOSAT) ACOS 2.9 “blended_albedo”, Δps, airmass, signal_O2  

TANSO (GOSAT) ACOS 3.3 Signal_strong_co2/signal_o2  

TANSO (GOSAT) ACOS 3.4 Δps, albedo_band_2, signal_strong_co2/ 

signal_weak_co2, zero_level_offset_o2, 

albedo_slope_strong_co2  

OCO-2 ACOS 7 Δps, CO2_grad_del, log(dust, water, salt aerosol)  

 

3.1.4 Current results  

The regions of representativeness were determined for each three-hour time step for both 

XCO2 and XCH4. The results did not vary greatly between the two gases, due to correlated 

anthropogenic fluxes and the dominance of transport as an influencing factor. As such, only 

the results for XCO2 are discussed here. Note that the actual sampling of the instrument was 

not included at this point: only the location was considered, and as such, both night and day 

are included, as well as conditions of cloud and instrument malfunction. Thus, these are 

certainly overestimations, especially for very high latitudes, winter conditions, and regions 

with persistent clouds. Nonetheless, it provides some interesting information about the 

influence of fluxes vs. transport on the spatial representativeness of a given total column 

measurement.  

Two months are shown in Figure 1.3: April and August 2010. Beginning in the north, it can be 

seen that the Arctic sites have rather large areas of representativeness for both months, 

indicating that the variability of the XCO2 fields in space is not tremendously large. 

Nonetheless, the representativeness is less in August, due to a larger influence of biosphere 

fluxes. This is more clearly seen for most of the terrestrial mid-latitude sites, which seem to 

almost disappear in the plot for August: Their areas of representativeness shrink down to 

only a pixel or two. This is not the result of changing anthropogenic fluxes, but rather the 

larger gradients brought about by biospheric uptake combined with increased convective 

transport in the summer months. The ocean-influenced site Izaña is notably less sensitive to 

this seasonal difference. 

In the tropics the site at Manaus (since discontinued) is remarkable for its small area of 

representativeness over all months, despite being located more or less in the middle of the 

Amazon. This seems to be largely the result of sampling downwind of the city of Manaus, 

combined with the variable natural fluxes (biosphere and biomass burning). In general, the 

sites with a strong influence from oceanic fluxes had rather large regions of 



GAIA-CLIM deliverable D1.5: Modelling studies of the impact of gaps – Initial results, June 2016 

9 

 

representativeness throughout the year, as is seen at, for example, Lauder, Réunion, and 

Wollongong. Interestingly the same cannot be said for Ascension Island, despite its location 

in the middle of the tropical Atlantic. It seems that here the impact of fire plumes from 

Africa (seen in both the northern and southern burning seasons) as well as the 

interhemispheric gradient across the intertropical convergence zone restrict the region of 

representativeness more than one might expect. 

 

 

Figure 1.3. The regions of normalized representativeness or potential colocation for XCO2 

are shown for April (upper) and August (lower), 2010. Of interest is how small the colocation 

regions at the northern midlatitudes become during the convectively active and high 

photosynthetic uptake month of August, as well as the very small region of 

representativeness of Manaus, in the Amazon, which is influenced by both local fires and the 

nearby city of Manaus. The XCH4 colocation regions are not appreciably different. In 

contrast, the Arctic, ocean, and Southern Hemisphere sites have generally larger regions of 

representativeness, as one would expect. 

As for the application in parameter space, some results are shown in Figure 1.4. All results 

shown here are for the SRFP 2.3.7 GOSAT retrieval. Beginning with latitude (top panel) as a 

sort of bridge between the spatial domain and parameter space, where it can be seen that 

there are almost no colocations between the latitudes of 0 and 20 degrees north. While 

there is also a minimum in the number of GOSAT soundings at these latitudes, mostly due to 

persistent clouds in the tropics, there are no collocated validation measurements at all. The 

next parameter shown is the surface albedo for Band 2 (~1.6 microns, middle panel of Figure 

1.4). Here the coverage is rather good across the parameter space, with only very few 

April, 2010 

August, 2010 
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soundings over the very brightest surfaces (albedo > 0.65) being not represented by the 

validation measurements. The bottom panel shows the retrieved aerosol optical depth for 

the same band, and again rather good coverage is shown with the TCCON colocations. Here, 

the peak is skewed to slightly lower AOD, but almost the full range of values is covered.  

 

 

 

 

Figure 1.4. All GOSAT SRFP soundings for 2010 are shown in red, those colocated with 

TCCON are shown in dark green. Three parameters are considered here: latitude, retrieved 

surface albedo for Band 2, and retrieved aerosol optical depth for Band 2. 
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3.1.5 Conclusions and future activities 

From this analysis, thus far, it can be seen that some stations are clearly representative of a 

much larger region than others, and their representativeness varies through the year, likely 

due to the impact of seasonally varying fluxes and transport changes across different 

seasons. Even though there are far more sites in the northern hemisphere, during the 

summer months the region of representativeness provided by these measurements is 

actually rather small. As such, the few Tropical and Southern Hemisphere sites represent a 

significantly larger region than the comparatively dense network of sites in Europe, North 

America, and East Asia. 

This work will be improved over the next year by considering the actual sampling of the 

sites, which will more realistically account for the restrictions on observational sampling by 

FTIR arising due to clouds, solar zenith angle, and instrument downtime.  This will also 

benefit the parameter space analysis. 

The parameter space analysis shows that, for many parameters, good coverage is already 

attained. What still needs to be expanded is the multivariate analysis. For example, Northern 

Africa is a region that has proved consistently difficult for the retrieval of XCO2, with all 

sensors and retrievals reporting values that are considered to be too high. This may be the 

result of the combination of high aerosol load and high albedo, both of which reach rather 

extreme values in this region. Figure 1.4 showed that the TCCON sites provided some 

coverage even at very high albedo and aerosol conditions, but in general there was a gap in 

this latitude range (0-20 degrees). A multivariate parameter analysis , planned for the next 

year of the project, will assess how well the simultaneous conditions of high surface albedo 

and high AOD (for example) are covered, perhaps taking into account solar zenith angle as 

well. The future work will further develop this analysis along these lines. 

3.2 Air quality, carbon monoxide (BIRA) 

3.2.1 Scope of the assessment  

This part of the study addresses the use of atmospheric measurements of carbon monoxide 

(CO) to provide constraints on the budget (sources and sinks) of this compound. The sources 

of CO are either direct, due to incomplete combustion, and include fossil fuel, biofuel and 

vegetation fire burning, or secondary chemical production resulting from the oxidation of 

hydrocarbons. The dominant CO sink is its reaction with the hydroxyl radical (OH), and 

therefore CO plays a key role in the oxidative capacity of the atmosphere, and in the removal 

of air pollutants. In several previous modelling studies, ground-based measurements (CMDL, 

now GMD) and/or satellite data (MOPITT, AIRS, IASI etc.) have been used in conjunction with 

global Chemical Transport Models (CTMs) to provide top-down constraints on the surface 

emissions and (in some cases) also the photochemical production of CO. In such studies, a 

set of emission parameters (with their specified error covariances) are varied in a CTM in 

order to reproduce a given set of atmospheric measurements to within their uncertainties. 

The resulting updated emissions prove to be sensitive not only to the choice of atmospheric 

dataset (e.g. ground-based vs. satellite) and inversion setup (e.g. number of emission 

parameters, assignment of errors on emissions and on the measurement data, choice of 
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either fixed or variable photochemical production due to hydrocarbon oxidation) but they 

are also greatly influenced by the representation of the chemical sink of CO, i.e. the 

abundance of hydroxyl radicals (OH). For example, as average OH levels are likely 

overestimated by most models in the Northern Hemisphere according to analyses of methyl 

chloroform (MCF) observations, for reasons that remain unclear, the total hemispheric top-

down CO emissions are likely too high. Based on MCF observations from surface 

measurement networks and airborne campaigns, a recent study (Patra et al., 2014) reported 

an annual ratio of Northern Hemispheric to Southern Hemispheric (NH/SH) OH 

concentration of 0.97±0.12, very close to 1, and much lower than the ACCMIP multi-model 

mean (NH/SH) OH ratio estimated at 1.28±0.10 (Naik et al., 2012). The potential impact of 

uncertainties in OH fields was evaluated in a recent regional-scale study (Jiang et al., 2015) 

employing the multi-spectral version 5 (V5J) of MOPITT retrievals, in which radiances in the 

thermal infrared (TIR, 4.7 μm) are combined with radiances in the near infrared (NIR, 2.3 

μm), thus providing greater sensitivity to near- surface CO over the main source regions 

(Worden et al., 2010).  

In Task 1.5, it is planned to take advantage of recently published literature in order to 

address the issue of assessing the CO budget on the global scale and evaluate how ground-

based measurements could provide useful constraints in the derivation of top-down 

emission estimates. To this end, we will use MCF-derived constraints on OH fields from the 

recent literature (Patra et al., 2014), and based on their uncertainties we shall perform 

sensitivity source inversions using either MOPITT (Deeter et al., 2013) or IASI CO (George et 

al., 2015) retrievals for one complete year. Vertical CO profile measurements by ground-

based FTIR instruments are used as additional constraints in the source optimizations, since 

vertical concentration gradients reflect the effects of chemical sinks. Vertical FTIR data are 

scarce, but better characterized than vertical information from satellites. The latter could, 

however, be used in a next step. 

3.2.2 Model used and planned simulations 

The IMAGESv2 global chemistry-transport model (Stavrakou et al., 2015) is to be used in an 

inverse modelling framework based on its full adjoint model (Müller et al., 2005; Stavrakou 

and Müller, 2006). This model will be run at 2°x2.5° horizontal resolution with 40 vertical 

hybrid levels, using ECMWF ERA-Interim meteorology. A priori emissions include vegetation 

fires from the GFED4 emission inventory (Giglio et al., 2013), isoprene fluxes from the 

MEGAN-MOHYCAN model (Stavrakou et al., 2014) and fluxes of other biogenic VOC from 

MEGAN model (Guenther et al., 2012) , and the EDGARv4.2 inventory for global 

anthropogenic emissions combined with a blend of regional inventories (Bauwens et al., 

2016). The chemical mechanism is comprehensive, with more than 120 compounds and a 

detailed chemical mechanism in particular for isoprene oxidation. 

3.2.3 Planned analysis  

The following steps are foreseen: 

S1. Forward simulation using IMAGESv2, in order to generate a distribution of OH 

concentrations, [OH]model (4-d distribution, month x latitude x longitude x vertical 
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level). Then use constraints based on MCF from the literature, namely the global 

MCF lifetime and the interhemispheric OH ratio. The [OH]model will be scaled to 

match those constraints, resulting in a best estimate of OH field [OH]best, but also a 

range based on the uncertainties on the constraint. 

S2. Using the [OH] uncertainty range, define a set of regular model inversions of CO 

source, using a methodology similar to Stavrakou and Müller (2006), constrained by 

satellite (MOPITT, IASI) CO measurements. The inversion involves the minimization 

of a cost function, which quantifies the overall difference between model and 

observations, and includes a regularization term penalizing those solutions too 

different from the a priori. 

S3. Perform a series of sensitivity inversions using different OH fields obtained in the 

previous step (S2). The sensitivity inversions will provide an ensemble of CO fields 

(month x latitude x longitude x vertical level), which minimize the difference 

between the model and the observations within the given uncertainties. 

S4. Analysis of the different inversions in previous step S3, focusing on their 

performance against vertical profiles at FTIR CO stations, as well as in situ 

observations from surface networks (e.g. GMD, GAW). Determination of the best set 

of emissions and OH fields – although the differences between different solutions 

might be possibly small in comparison with uncertainties related to other 

parameters. Sensitivity studies exploring the effects of alternative a priori emissions, 

emission set-ups, vertical mixing parameterizations might additionally be conducted 

to assess these effects.  

The main output of this study will therefore be: 

(1) an updated top-down determination of CO emissions and photochemical 

productions, based on a wide range of available literature constraints 

(2) an assessment of the sensitivity of the top-down emissions to errors in [OH] as well 

as other model parameters 

(3) a determination of the added value represented by vertical CO profiles at FTIR 

stations 

3.2.4 Current results  

The step S1 (see above) has been completed, i.e. a 4-dimensional OH field ([OH]MCF) 

consistent with the MCF constraints has been derived with the IMAGES model. Without the 

constraint, the average [OH] in the Northern Hemisphere would be significantly larger than 

in the Southern Hemisphere (by a ratio of ~1.4). An alternative OH distribution, also 

consistent with MCF, but with a different seasonality and intrahemispheric distribution, is 

provided by the climatology from Spivakovsky et al. (2000) downscaled by a factor of 0.92, 

hereafter denoted [OH]S92 (Patra et al., 2014). The relevance of the OH adjustment for CO 

(inverse) modelling is clear from the comparison of the model calculations with CO total 

columns from the MOPITT (Measurements of Pollution in the Troposphere) version 5 
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(Deeter et al., 2013), as seen on Figure 2.1. The lower OH concentrations in the Northern 

Hemisphere lead to a better agreement of the model with observed CO columns.  

 

Figure 2.1. Monthly averaged CO total column (1018 molec. cm-2) for June 2010, retrieved 

from MOPITTv5 and model-calculated using IMAGES with different OH fields.  

 

3.2.5 Conclusions so far and outlook 

The uncertainty in the hemispherically averaged [OH] is estimated at about 18% based on 

estimated uncertainties on global OH and on the interhemispheric ratio (12% each). We 

define the following source inversions to be conducted in the coming months:  

(1) STD using [OH]MCF,  

(2-3) MCF_HIGH and MCF_LOW using [OH]MCF increased or decreased by 18%, 

respectively,  

(4) SPIV with [OH]S92,  

(5-6) SPIV_HIGH and SPIV_LOW, using [OH]S92 increased or decreased by 18%, 

respectively.  

In this way, the variability in the hemispheric OH averages and the variability in the 

intrahemispheric distribution and seasonality are explored. The CO sources will be optimized 

using MOPITT data (Step S3) and the optimized CO fields will be evaluated against ground-

based data (S4), in particular the vertical CO profiles from FTIR stations. This will then allow 
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us to determine the potential added values of vertical profiles for constraining the CO 

budget. 

3.3 Aerosols (FMI) 

3.3.1 Scope of the assessment  

Atmospheric aerosol particles remain the largest source of uncertainty in the estimates of 

current drivers of climate change (IPCC, 2013). A better estimate of global aerosol fields both 

in polluted and pristine environments is therefore an urgent research topic. Given the short 

lifetime of atmospheric aerosols (from hours to ~1 week in the troposphere) and the 

relatively sparse temporal resolution of satellite-based observations (pass over a specific site 

every 0.5-16 days depending on the instrument), it is likely that satellites miss out on some 

aspects of the atmospheric aerosol variability. Further limitations of most satellite 

instruments are that they can observe aerosols only in cloud-free conditions, there are no 

observations during nighttime, and information on aerosol composition is very limited. On 

the other hand, the surface-based Aerosol Robotic Network (AERONET) (Holben et al., 1998) 

provides long-term, continuous measurements of Aerosol Optical Depth (AOD) and other 

aerosol optical and radiative properties from dozens of (mostly continental) measurement 

sites. These continuous measurements enable a good characterization of local aerosol 

variability; however reasonable geographical coverage is obtained only over parts of Europe 

and the US, and elsewhere long-term AERONET measurements are very scarce. Given these 

respective limitations of both satellite and surface-based observations, it is important to 

identify the geographical regions that currently suffer from poor observational constraints of 

aerosol properties in order to guide the development of future observational capabilities. 

As such, in order to overcome this issue, the use of a global aerosol-climate model was 

proposed in order to identify the geographical gaps in the surface-based and sub-orbital 

observing capabilities of atmospheric aerosols and to pinpoint the regions where additional 

surface-based measurements would best fill gaps in current observational capabilities. 

3.3.2 Model used and planned simulations  

In this study, the development version of the global aerosol-climate model ECHAM-

HAMMOZ (ECHAM6.1-HAM2.2-SALSA) was used (Stier et al., 2005; Bergman et al., 2012]. 

The model consists of an atmospheric core model ECHAM, which is used to solve the 

fundamental equations for the atmospheric flow and physics and tracer transport, and of an 

aerosol model, HAM. Sectional Aerosol module for Large Scale Applications (SALSA) was 

implemented to calculate aerosol microphysics (Bergman et al., 2012]. SALSA uses 10 size 

sections to cover the aerosol size range from 3 nm to 10 µm. Anthropogenic and biomass 

burning aerosol emissions were described with AeroCom-II Atmospheric Chemistry and 

Climate Model Intercomparison Project (ACCMIP) data (Riahi et al., 2007, 2011] and 

provided as monthly average emission fields. Biogenic emissions were simulated with an 

interactive biogenic emission model MEGAN, which determines emissions of terpenes and 

isoprenes as a function of temperature, available solar radiation, soil moisture, and carbon 

dioxide concentrations. To account for atmospheric SOA formation, a scheme based on the 
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volatility basis set (VBS) (Donahue et al., 2011) was introduced into the model. It enables the 

modelling of the condensation and evaporation of semi-volatile organic compounds (sVOC) 

correctly. The Global Fire Emissions Database (GFED3) was implemented to account for the 

biomass burning emissions. The modeled AOD is calculated at 550nm using concentrations 

of dust and sea salt particles, biomass burning products (black carbon and organic carbon) 

and anthropogenic aerosols (sulphates, nitrates etc.). 

In this study the model was run using a T63 horizontal resolution (roughly 1.9 × 1.9°) and 31 

pressure levels that reached up to 10 hPa. The model was nudged using ECMWF reanalysis 

data to ensure compatibility between the model and the observed atmospheric conditions. 

The simulation period was 2005-2010 with a three-month spin-up. The model produces 

three-hourly average output. 

3.3.3 Planned analysis 

Satellites, even with a near constant sampling frequency for a given grid box, are neither 

intended nor able to provide a representative diurnal variability of AOD. As such, ground 

based measurements ought to be used instead. As Arola et al (2013) showed based on 

AERONET measurements, the site-specific diurnal AOD pattern varies significantly due to 

several potential reasons (meteorology, proximity to pollution sources, transport etc). The 

specific objective of this study was to investigate whether the global aerosol-climate model 

ECHAM-HAMMOZ has the capacity to reproduce these diurnal cycles and if so, could it be 

used to indicate in which other regions (that do not have AERONET coverage) such cycles 

could be found. 

3.3.4 Current results 

The model performance was assessed by comparing the measured and modelled AOD 

diurnal variation at 108 AERONET locations around the world. The stations were chosen 

based on a requirement of a minimum of 100 days of data available, each day having at least 

one observation both before and after the local solar noon. The AERONET level 2.0 direct 

sun data of AOD at 500 nm (from 5:00 to 17:00) were used as input to form the diurnal 

patterns during the summer season covering several years, depending on the location.  

All the individual summer AOD observations were used to calculate the departures form the 

daily mean. Each hourly departure was then averaged for each hour of the local time to form 

the average daily cycle of the departures at each site. The relative departure was then 

calculated by dividing each hourly-mean absolute departure by the overall summer AOD 

mean. In the process of model validation, the 3-hourly average was used to facilitate the 

comparison to the model output. 
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Figure 3.1. The diurnal cycle functions used for the CONTROL (green), ONEPEAK (blue) and 

the sensitivity analysis TWOPEAKS (black). 

 

ECHAM was run with three configurations for the anthropogenic aerosol emissions: 

1. CONTROL – with all the above schemes intact and constant monthly anthropogenic 

aerosol emission. 

2. ONEPEAK – as the CONTROL run, but an artificial diurnal cycle for the anthropogenic 

emissions was introduced to the model by using a cosine function that peaks during 

midday. The amplitude of the cosine function was chosen so that the night time 

minimum was half of the normally constant emissions flux and daytime maximum 

was roughly 30% more. Additionally, the cosine function was made to preserve the 

daily total emission flux (Figure 3.1). 

3. TWOPEAKS – as the CONTROL run, but with an exaggerated diurnal variation of the 

anthropogenic aerosol emissions peaking at 8 AM and 5 PM (in the form of a sum of 

two exponentials), used for sensitivity analysis. In this case the night -time minimum 

was chosen to be 30% of the normally constant emissions flux while the daytime 

maxima were about 10 times higher than the minimum. As in the previous case, the 

exponential function was made to preserve the daily total emission flux (Figure 3.1). 

When comparing the model CONTROL and ONEPEAK runs to the observations, only 3 of 108 

locations investigated were found to be consistent with the observed AOD diurnal variations 

in terms of both magnitude and pattern (one example in Figure 3.2a). For the rest of the 

stations, modelling estimates of the variability shows considerable deficiencies with regard 

to the daily profile (Figure 3.2b). The inclusion of a cosine daily variability in the modelled 

anthropogenic emissions (the ONEPEAK run) does not influence the model output in any 

significant way. Both the daily trend and the magnitude discrepancies remain at the same 

level as in the CONTROL run. 
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Figure 3.2. Simulated and measured diurnal variability of relative AOD departures from the 

daily mean. Fort McMurry is one of the three locations where the model agrees well with 

the measured AOD, while Brussels is a typical example of model-observations mismatch. a) 

CONTROL run. b) ONEPEAK run. 

 

As the cosine function introduces a weak variation of the anthropogenic emissions with no 

conclusive effects on the AOD diurnal variation, a stronger function in the form of a sum of 

two exponentials was considered as a simplistic method of estimating the sensitivity of the 

modelled AOD output to the variation of the anthropogenic emission input. Figure 3.3 

presents the effect of the exponential function at the same two locations as in Figure 3.2. 

The first evident conclusion is that the model is weakly sensitive to the strong artificial 

diurnal cycle introduced in the TWOPEAKS run. Its effect is mostly observed at the extremes 

of the AOD relative departure, that is the minima/maxima are in general affected more than 

the intermediate AOD values. The architecture of the AOD diurnal cycles remains basically 

analogous to that obtained in the CONTROL and ONEPEAK runs. 

 

Figure 3.3. As in Figure 3.2, but TWOPEAKS run. 

 

The daily trend analysis is illustrated in Figure 3.4, where the comparison between the 

observations and the three model runs is presented. The model reproduces the AERONET 

AOD relative departure within a factor of 2 in less than 20% of the cases. It also indicates 

that all three simulations are in general unable to reproduce the daily maxima/minima. 
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Figure 3.4. Scatter plot of the observed (AERONET) and simulated AOD relative departures. 

The model is sampled in the same temporal and spatial location as of the observations. The 

green dots represent the CONTROL run, the blue dots the ONEPEAK run and the black dots 

the TWOPEAKS run. The 1:1 continuous line is included for clarity. 

 

3.3.5 Conclusions and future activities 

Within GAIA-CLIM, FMI have performed global aerosol-climate model simulations in order to 

identify geographical gaps in the surface-based observing capabilities of atmospheric 

aerosols. The studied ECV was aerosol optical depth (AOD). Our simulations aimed at 

characterizing how representative the AERONET stations are of their respective 

environments in terms of aerosol variability. The chosen approach relied on the assumption 

that the ECHAM-HAMMOZ model is capable of capturing the qualitative features of 

atmospheric aerosol variability, and thus can be used to identify gaps in current observation 

systems in terms of geographical coverage. However, the detailed comparison of the 

modelled and the observed aerosol variability at 108 selected AERONET sites in different 

environments shows that, unfortunately, the model is not equipped to handle this specific 

issue. Implications and possible remediation will be explored. 

 

3.4 Ozone and related trace gases (KIT) 

3.4.1 Scope of the assessment  

The evolution of the stratospheric ozone layer over the 21
st
 century will be controlled by the 

decreasing concentration of ozone depleting substances (ODS) following the Montreal 

Protocol and its amendments, as well as by climate change due to the increase of 

greenhouse gases. Tropospheric ozone, itself a greenhouse gas, will also be influenced by 

changes in precursor emissions and indirectly by climate change due to the increase of 

greenhouse gas concentrations. One sensitive region is the tropics, where chemistry climate 

models predict that stratospheric ozone will not recover following the reduction of ODS, but 

will further decrease due to changes in large scale circulation (enhancement of the Brewer-
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Dobson circulation) as a result of increased concentrations of greenhouse gases. However, a 

clear attribution of past changes in tropical column ozone is complicated by uncertainties in 

concurrent increases in tropospheric ozone. 

Here we will assess gaps in the geographical coverage of ozone column measurements (– as 

well as gaps in relevant parameters), and in particular we will assess whether the coverage 

of existing networks is sufficiently representative to detect expected climate change signals. 

Results so far focus on ozone column observations in the tropics since the existing coverage 

in this region is particularly sparse. 

 

3.4.2 Model system and simulations used 

The data for our analysis are part of a Chemistry–Climate Model Initiative (CCMI) 

recommended set of simulations by the Earth System Chemistry Integrated Modelling 

(ESCiMo) consortium. The ESCiMo simulations have been performed at DKRZ in Hamburg 

using version 2.51 of the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The long-

term simulation comprises a time span of 150 years starting in 1950 and combines hindcast 

and projections. The future greenhouse gas emissions are based on the RCP6.0 scenario, 

while the sea surface temperatures and sea ice cover are taken from HadGEM2 simulations. 

The ozone data are available as monthly averages in a spatial resolution of T42L47 (approx. 

2.8°x2.8° and with a top level 1 Pa). For further detailed information, we refer to the 

corresponding publication by Jöckel et al. 2016. 

 

3.4.3 Planned analysis 

In Fig. 4.1, the presently active NDACC measurement stations are shown on a global map. 

The colour code used indicates zonal bands. While the majority of stations are located in 

mid-latitude Europe (green), less than ten stations are based in the tropics (red) and only 

one in the northern hemisphere subtropics (golden, Izaña, Tenerife, Spain). Of the tropical 

stations only two are in the deep tropics close to the equator (Paramaribo, Suriname and 

Natal, Brasil). Given this sparseness of stations in the deep tropics, we are going to 

investigate how representative those available data are in terms of zonal and global ozone 

trends. 
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Figure 4.1. NDACC measurement stations. The colour coding indicates the zonal band: Red: 

tropics (20° N – 20° S), golden: subtropics (20°-30° N/S), green: mid-latitude (30°-60° N/S), 

blue: high-latitude (60°-90° N/S); grey: presently inactive stations. See 

http://www.ndsc.ncep.noaa.gov. 

 

From the 150 years of ESCiMo simulation, the total column ozone has been used. For eight 

tropical stations, we have evaluated data at the nearest model grid point with respect to the 

real location in both the horizontal and vertical position. A moving average with a time 

window of seven years has been used to smooth periodical ozone variation (e.g. seasons). 

The eleven years solar cycle remains as an underlying periodical signal. 

 

3.4.4 Current results  

In various climate simulation studies, the tropical upwelling has been found to be increasing 

by the end of the 21
st
 century. As a consequence of the accelerated Brewer Dobson 

Circulation (BDC) there is very likely to be a decrease of tropical lower-stratosphere ozone. 

Beside this dominant dynamical affect, a recent study (Meul et al. 2014) identifies 

subsiduary contributions from changes in chemical ozone production and destruction, which 

may be expected to introduce altitude-dependent alterations. While the contribution of 

chlorine to the ozone depletion declines, the importance of HOx and NOx rises. Regarding the 

ozone production, methane photolysis may slightly gain importance, which is noteworthy in 

case of future scenarios seeing a significant rise in methane emission (RCP8.5). The 

tropospheric ozone is mainly affected by this increase in methane. 

In Fig. 4.2, the resulting ozone column trends are depicted for tropical zonal mean (bold blue 

line) and eight NDACC stations located in the tropics (differently coloured dashed lines). The 

ozone divergence is shown with respect to the annual mean of 1980. The shaded area 

represents the standard deviation of the moving average of the tropical zonal mean. In Fig. 

4.2a, b, c respectively, the total column, tropospheric column and stratospheric column 

ozone are displayed. 
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Figure 4.2. Column ozone trends for zonal averages and currently active NDACC stations (the 

latter as simulated, not as observed). Data are taken from long-term, free-running ESCiMo 

simulations (RC2-base-05). NDACC station location were provided through the NDACC 

webpage. The bold, blue line represents the corresponding tropical zonal mean over the 

period of 150 years. Data have been smoothed using a moving average approach with a 

window size of seven-years. The remaining underlying periodical signal corresponds to the 

solar cycle. The blue shaded area represents the standard deviation of the moving average.  

The change of ozone is with respect to the annual-mean of 1980 in the tropics (a) Total 

column. (b) Tropospheric column. (c) Stratospheric column. 

For the total column ozone (Fig 4.2a), three major periods can be identified: 

� Ozone hole (~1979-2010) 

� Recovery (~2010-2060) 

� Accelerated circulation (~2060-…) 

The divergence between individual stations and the true area average varies within 2% over 

150 years. Within the ozone hole period, all local ozone columns agree rather well with the 
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zonal mean. In the recovery period, the northern-most stations at Hawaii (Mauna Kea, Hilo, 

Mauna Loa), diverge most strongly from the zonal mean. Splitting the total column in 

troposphere (Fig 4.2b) and stratosphere (Fig 4.2c) fraction, an underlying rise in troposphere 

ozone in the course of the 21
st
 century can be identified, which is strongest for the northern-

most stations. In agreement with other studies, the stratosphere ozone column in the 

tropics does not see a recovery by mid-century. 

 

3.4.5 Conclusions and future activities  

Our results so far indicate that observations from stations such as Paramaribo (Suriname), 

San Jose (Costa Rica) and Cape Matatula (American Samoa) cover the zonal ozone column 

trend well. While these few individual stations are generally representative for stratospheric 

ozone observations in the tropics at large, for tropospheric ozone there are larger 

discrepancies. Here, we also show that the expected changes in total ozone in the tropics are 

caused almost equally by changes in stratospheric ozone and by changes in tropospheric 

ozone. This may have implications for the validation of long-term ozone observations in the 

tropics. A more thorough statistical analysis has yet to be conducted to fully establish and 

verify these first results for the tropics as well as other latitude bands. 

 

3.5 Assessing geographical gaps for reference temperature and humidity in-
situ data (ECMWF) 

3.5.1 Scope of the assessment  

Satellite instruments sensitive to atmospheric temperature and humidity are regularly 

assimilated into Numerical Weather Prediction (NWP) and Re-analysis systems and 

contribute to the atmospheric (re)analysis products of temperature, humidity and vector 

wind. Before assimilating a new instrument, the radiances are compared to the re-analysis 

or NWP first guess fields (forecasts from the previous cycle) in radiance space, in order to 

assess the quality of the data.  The short-range forecasts, also known as the background (B), 

are transformed into radiance space using a radiative transfer forward model and then 

compared to the observed radiances (O) for the different instruments. Global statistics of O - 

B tend to show constant global biases as well as biases that vary geographically or as a 

function of orbital parameters. In some cases these biases indicate errors in the satellite 

instrument radiances (e.g. due to calibration) or in the radiative transfer forward model, 

both of which must be corrected either prior to or during the assimilation, in order to 

prevent these errors from propagating into the reanalysis products and/or the forecasts of 

NWP systems. In some cases the biases can be easily diagnosed as due to the instrument, 

such as the orbital-dependent biases found for the SSMI/S instrument (Bell et. al 2008, Geer 

et. al. 2010). These biases were clearly visible in maps of O - B and diagnosed to be related to 

solar intrusions into the warm calibration load and emission from the main reflector of the 

instrument. In other cases it is less obvious whether the biases observed are due to 

instrument errors or errors either in the radiative transfer model or in the NWP short-range 

forecasts. Furthermore, while the presence of instrument-related errors can often be 
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detected, it is difficult to quantify them since the errors in the forecast are not known 

exactly.  

Reference in-situ radiosonde measurements for temperature and humidity with calculated 

uncertainty values, such as the GRUAN network, have the potential to diagnose the sources 

of bias observed in O – B statistics, as well as to quantify these biases and give confidence 

intervals for these values. In work package 4 of the GAIA-CLIM project, a GRUAN processor is 

being developed which will transform the GRUAN observations and uncertainties into 

radiance space for different satellite instruments. The GRUAN processor will allow a 

comparison between the reference in-situ observations and both the NWP model 

backgrounds and the satellite instrument observations (both in radiance space), and could 

help in diagnosing and quantifying the biases observed for the different satellite 

instruments. 

However, while the GRUAN data are SI-traceable and have accurate estimates of 

uncertainties, they are only available for a limited number of locations and it is not clear 

whether the network is geographically capable of diagnosing the types of bias observed in O 

– B statistics, in particular biases that vary geographically. In this study we aim to assess the 

geographical capabilities of the GRUAN network for diagnosing the sources of O – B biases 

for a number of different satellite instruments. 

 

3.5.2 Methods  

In this study we will firstly perform a review of the types of bias observed in O – B values for 

key satellite instruments, including the AMSU-A and MHS microwave temperature and 

humidity sounding instruments, and the Chinese FY-3C microwave temperature and 

humidity sounding instruments, MWTS-2 and MWHS-2, which are being assessed in work 

package 4 of the GAIA-CLIM project.  In order to assess the geographical representiveness of 

the GRUAN sites, the O – B values for these instruments will then be subsampled at the 

locations of the GRUAN sites and the biases of the sub-sampled dataset compared to the 

global O – B statistics. If the statistics for the subsampled dataset are comparable to the 

global values then this will indicate whether the GRUAN network is ‘geographically capable’ 

of diagnosing such biases. This will also allow us to better understand which types of bias the 

GRUAN data can diagnose as well as areas where we may have geographical gaps. It should 

be noted, however, that this study focuses on gaps in geographical coverage only and does 

not include an assessment of potential temporal or spatial mismatch gaps in the GRUAN 

measurements 

3.5.3 Current results  

Microwave Temperature and Humidity Sounders 

The main microwave temperature sounding instrument to be used in NWP and reanalysis 

models in recent years is the Advanced Microwave Sounding Unit –A (AMSU-A) instrument. 

To date, there have been 7 AMSU-A’s flown on both American and European satellite 

platforms, 6 of which are still currently operational. In addition the Advanced Technology 
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Microwave Sounder (ATMS) instruments, flown on the American Suomi-NPP satellite, have 

the same channels, as does the Chinese MicroWave Temperature Sounder -2 (MWTS-2) 

instrument, flown on the FY-3C satellite. Conical scanners such as the Special Sensor 

Microwave Imager/Sounder (SSMI/S) also have these channels, but in this study we will 

focus on the cross-track scanning instruments of AMSU-A, ATMS and MWTS-2. The 

temperature sounding channels of these instruments each measure in the frequency range 

50 – 60 GHz, sampling in between oxygen absorption lines, and are each sensitive to 

temperature at different atmospheric heights. The channel numbers and frequencies are 

given in Table 5.1. The sensitivity of each channel to different atmospheric heights can be 

illustrated by the Jacobians given in Fig. 5.1. As this figure shows, each channel is sensitive to 

temperature over a range of heights, with a peak height sensitivity. In this study we will 

exclude the channels that peak above the maximum height of GRUAN radiosondes 

(approximately 5 – 10 hPa), which means excluding channels 12 – 14. 

Microwave Humidity Sounders measure around the water vapour absorption line at 183 

GHz. These sounders include the MHS (Microwave Humidity Sounder) instruments, ATMS 

and the MicroWave Humidity Sounder -2 instrument flown on FY-3C (all of which are cross-

track scanning instruments). There are currently 4 MHS instruments flown on 2 NOAA 

satellites and 2 MetOp satellites, one ATMS and one MWHS-2. The MHS instruments have 3 

sounding channels around 183 GHz. The ATMS and MWHS-2 instruments have the same 

channels and an additional two channels. The channel numbers and frequencies of MHS, 

MWHS-2 and ATMS are given in Table 5.2. Each sounding channel on these instruments is 

sensitive to relative humidity at different heights of the atmosphere. The sensitivity to 

different heights can be illustrated by the humidity Jacobians, shown in Fig. 5.2 for the 

MWHS-2 channels. It is worth noting that the Jacobians themselves vary with atmospheric 

humidity so that in a dry atmosphere the channels peak at lower heights and in a wetter 

atmosphere they peak higher up. This is different to the AMSU-A temperature sounding 

channels, since the AMSU-A is sensitive to oxygen which is a well-mixed gas. 
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Table 5.1. Temperature Sounding channel numbers and frequencies for the AMSU-A, ATMS 

and MWTS-2 instruments 

Channel frequency 

(GHz) 

AMSU-A channel 

number 

ATMS channel 

number 

MWTS-2 channel 

number 

53.596 ± 0.115 5 6 3 

54.4 6 7 4 

54.94 7 8 5 

55.5 8 9 6 

57.29 9 10 7 

57.29 ± 0.3222 ± 

0.217 
10 11 8 

57.29 ± 0.3222 ± 

0.048 
11 12 9 

57.29 ± 0.3222 ± 

0.022 
12 13 10 

57.29 ± 0.3222 ± 

0.010 
13 14 11 

57.29 ± 0.3222 ± 

0.0045 
14 15 12 

 

Table 5.2. Humidity Sounding channel numbers and frequencies for the MHS, ATMS and 

MWHS-2 instruments 

Channel frequency 

(GHz) 
MHS channel number ATMS channel number 

MWHS-2 

channel number 

183.31 ± 1.0 3 22 11 

183.31 ± 1.8 - 21 12 

183.31 ± 3.0 4 20 13 

183.31 ± 4.5 - 19 14 

183.31 ± 7.0 

(ATMS/MWHS-2)/ 

190.311(MHS) 

5 18 15 
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Figure 5.1. Temperature Jacobians for AMSU-A sounding channels (normalised by the 

change in ln pressure of each model level). 

 

Figure 5.2. Humidity Jacobians for the MWHS-2 183 GHz humidity sounding channels 

(normalised by the change in ln pressure of each model level). 
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Biases in O – B statistics 

The types of bias typically observed for the O – B values of microwave temperature and 

humidity sounding instruments include: 

� Globally constant biases 

� Airmass-dependent biases 

� Scan-angle dependent biases 

� Scene-temperature dependent biases 

Examples of these biases are shown in Figs. 5.3 – 5.5. The background values from these 

plots were calculated from the ECMWF short-range temperature and humidity forecasts, 

and transformed into radiance space using either the clear-sky radiative transfer model 

RTTOV (for AMSU-A, MWTS-2 and ATMS) or the all-sky radiative transfer forward model 

RTTOV-SCATT (MWHS-2 and MHS). All data were screened for cloud and averaged over 1 

month for June 2014. 

Figure 5.3 shows the airmass-dependent biases observed in channel 8 of MetOp-B AMSU-A. 

Similar biases can be observed for this channel for most AMSU-A instruments, and this bias 

has recently been hypothesized to be due to on-orbit shifts in the frequency pass-bands for 

these instruments (Lu and Bell 2010). GRUAN data could potentially help to either confirm 

this hypothesis or indicate that some or all of these biases are due to the model background. 

The locations of the GRUAN sites are also shown in Figure 5.3. Note that there are sites 

which are currently certified to GRUAN standards, sites awaiting certification and sites which 

are currently inactive (see www.dwd.de/EN/research/international_programme/gruan/ 

home.html for more information).  An initial look at the GRUAN sites plotted on this map 

indicates that if all three types of site are included they are geographically capable of 

observing this type of bias, since the bias appears to vary with latitude and there are GRUAN 

sites for a range of latitudes. Taking account of only the certified sites, however, indicates a 

gap in the tropics and in the south polar region (latitudes south of 60°S). It is therefore 

important to fill this gap with the certification of Davis in Antarctica, and the potential 

GRUAN sites in the tropics (La Reunion, Singapore, Melbourne, Alice Springs and Darwin). 

Figure 5.4 shows the global biases observed for the MWTS-2 instrument, which are 

consistently negative (Lu et al 2015), contrary to the same channels on other satellite 

instruments. Given that the biases of the same channels of AMSU-A are much smaller it is 

thought that these strong biases are due to the MWTS-2 instrument. 

Figure 5.5 shows scan angle biases which are remarkably similar for the same channels on 

different instruments. This bias is therefore likely to be due to radiative transfer model error 

or NWP background model error. 

In this study we will sub-sample O – B statistics at GRUAN sites and see if they show the 

same biases as for the global data sample, presented in Figs. 5.3 – 5.5. 
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Figure 5.3. Map of the Mean observation minus ECMWF background, averaged over 1 

month (July 2014), for MetOp-B AMSU-A channel 8. The global bias has been removed from 

the data, such that the values are centred around zero. The locations of the GRUAN stations 

are also shown, as dots, with red dots indicating certified stations, black dots the stations 

that are currently uncertified and yellow dots the inactive stations. 

 

Figure 5.4. Global biases as a function of channel number for the MicroWave Temperature 

Sounder -2 (MWTS-2) instrument flown on the FY-3C satellite. 



GAIA-CLIM deliverable D1.5: Modelling studies of the impact of gaps – Initial results, June 2016 

30 

 

 

 

Figure 5.5. Scan-angle biases for the 183.31 +/- 1.0 GHz channels on 3 different satellite 

instruments, including FY-3C MWHS-2 (channel 11), Suomi-NPP ATMS (channel 22) and 

MetOp-B MHS (channel 3). 

 

3.5.4 Conclusions and future activities  

This study has only recently begun and therefore the work is ongoing. An initial look at maps 

of the airmass-dependent biases for MetOp-B AMSU-A channel 8 indicate that the current 

GRUAN sites have a gap in the tropics and over the south pole, which would make them 

unable to identify the source of this type of bias. However a number of radiosonde sites are 

awaiting GRUAN certification and if these sites are certified then the GRUAN network could 

be capable of identifying such biases. Key sites awaiting certification appear to be those in 

tropics (La Reunion, Singapore, Darwin, Alice Springs) and the site in Antarctica (Davis) which 

would be the only site to sample the region below 60°S.  

Future work in this study will extend the assessment of airmass-dependent biases to other 

channels on AMSU-A and to the humidity instruments, and also investigate whether the 

GRUAN sites are capable of identifying the sources of global biases and satellite scan-angle 

dependent biases. 

4. Overall conclusions and recommendations 
In this report we have highlighted a range of modelling studies and approaches that show 

potential to help inform observational network design practices. 

  

The ECVs and gaps covered by the model-based gap analysis are summarized in Table 4. 

Clearly, most of the analysis focuses on the spatiotemporal aspects, as these are the scales 

that can be directly assessed with models. None of the analyses address the technical, 

governance, or uncertainty-related gaps. 
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Table 4: A summary of the gap analysis presented in this deliverable, with respect to the gap 

types and the ECVs from Section 3. Here the spatiotemporal gap is separated into the spatial 

and temporal components. 
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Given this focus on the spatiotemporal context, it is clear that this is where the most 

guidance regarding shortcomings in the current ground-based observing systems can be 

provided. With this in mind, the work in this task over the next period will aim to define 

regions in which the capabilities to validate spaceborne measurements can be optimally 

expanded. It will be interesting to see if common regions will emerge across ECVs, which 

could point to the need for a general expansion of ground-based observation systems to 

specific regions. 

 

With respect to the four questions raised in Section 2, the work to this point focuses on 

answering the first three: how best to use models for interpolation and analysis of sparse in-

situ measurements; where additional measurements would add the most interpretive value; 

and the importance of measurement frequency, scheduling and quality. What has not yet 

been explored is the benefit of fewer measurements with lower uncertainties vs. more 

measurements with higher uncertainties. This points to an aspect of the analysis that could 

be expanded upon during the coming year. 
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List of Acronyms  
 

ACCMIP The Atmospheric Chemistry and Climate Model Intercomparison 

Project  

AERONET   Aerosol Robotic Network (aeronet.gsfc.nasa.gov) 

AIRS   Atmospheric Infrared Sounder 

AOD    Aerosol optical depth 

BIRA    Belgian Institute for Space Aeronomy (www.aeronomie.be)  

CCMI  Chemistry Climate Modelling Initiative 

(www.met.reading.ac.uk/ccmi)  

CTM   Chemistry transport model 

ECHAM-HAMMOZ  Aerosol climate model based on the climate model ECHAM 

ECHAM/MESSy  Chemistry climate model based on the climate model ECHAM and 

the Modular Earth Submodel System 

ECMWF  European Centre for Medium Range Weather Forecasts 

(www.ecmwf.int) 

EO    Earth observation 

FMI     Finnish Meteorological Institute (http://en.ilmatieteenlaitos.fi/) 

FTIR    Fourier Transform Infra-Red (ground-based) observations 

GFED4   Global Fire Emissions Database (version 4) 



GAIA-CLIM deliverable D1.5: Modelling studies of the impact of gaps – Initial results, June 2016 

35 

 

GMD Geoscientific Model Development (http://www.geoscientific-model-

development.net/) 

GOSAT Greenhouse Gases Observing Satellite 

IASI   The Infrared Atmospheric Sounding Interferometer 

IGAC  International Global Atmospheric Chemistry project 

(www.igacproject.org) 

KIT    Karlsruhe Institute of Technology (www.kit.edu) 

KNMI  Royal Netherlands Meteorological Institute  

(http://www.knmi.nl/over-het-knmi/about) 

 

MACC/CAMS  Monitoring Atmospheric Composition & Climate / Coperrnicus 

Atmospheric Monitoring System 

MEGAN Model of Emissions of Gases and Aerosols from Nature  

MOHYCAN Biogenic Hydrocarbon Emission Modeling  

MOPITT  Measurement of Pollution in the Troposphere 

MPI BGC    Max Planck Institute for Biogeochemistry (www.bgc-jena.mpg.de) 

NDACC  Network for the Detection of Atmospheric Composition Change 
(www.ndacc.org) 

SOA Secondary Organic Aerosol 

TCCON    Total Carbon Column Observing Network (www.tccon.caltech.edu) 

VOC   Volatile Organic Compounds 

WCRP    World Climate Research Programme (wcrp-climate.org) 


