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Executive summary 
 

GAIA-CLIM aims at supporting the European Commission’s Copernicus Programme by assessing and 

improving the fitness-for-purpose of sub-orbital (ground- and balloon-based) reference 

measurements in the validation of observational data sets from satellites. In particular, the project 

aims at improved traceability and uncertainty characterization,  of the individual sub-orbital 

measurement (systems) and of the comparison with satellite data.     

A key issue in the geophysical validation of satellite data sets with respect to sub-orbital reference 

measurements is the interpretation of their differences in terms of known, quantified, uncertainties. 

This aspect includes not only the measurement uncertainties  associated with the individual 

measurements, but also the additional uncertainties that appear when comparing different 

perceptions of the inhomogeneous and variable atmosphere, that is, when comparing data sets 

characterized with different sampling and smoothing properties, both in space and time. Those 

“comparison uncertainties” are the main topic of investigation for GAIA-CLIM Work Package 3, and 

this document, Deliverable 3.2, describes the principle of co-location mismatch, and how the 

resulting uncertainties can be decomposed through a careful metrological analysis of the 

measurements and their comparison. Moreover, it provides an overview of available methods to 

quantify these uncertainties so that they can be taken into account when interpreting the results of 

a data validation (data comparison).  

In Section 1,  the general issue of co-location mismatch is introduced,  followed by an introduction to 

the principles of metrology, and a first, conceptual, decomposition of the uncertainty budget of a 

data comparison. This decomposition reveals the need for three types of metrological analyses:  

1) The metrological traceability of the measurement, described in Section 2 and required to 

properly estimate the measurement uncertainty,  

2) The spatiotemporal properties of the measurement, described in Section 3 and required to 

estimate the additional uncertainties resulting from the fact that measurements are never 

point-like and the atmosphere never fully homogeneous and constant.   

3) The metrology of a data comparison, described in Section 4, and required to estimate the 

uncertainties due to co-location mismatch in the broadest sense, due to point-like 

spatiotemporal differences but also smoothing differences. Only at this point can the 

uncertainty budget of a comparison be closed and interpreted in terms of data quality.     

Section 5 mentions some key methods to quantify the uncertainties due to spatiotemporal 

properties and mismatches. As such, this document is meant to serve as a theoretical background 

and guidance document in support of several upcoming deliverables from WP3, such as D3.4, the TN 

on measurement mismatch studies, D3.6, the library of smoothing and sampling error estimates, 

and D3.7, the set of tools aimed at integrating WP3 work into the Virtual Observatory developed in 

WP5.    
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1. Introduction 
 

High-quality observational datasets from satellites constitute a key component of the European 
Commission’s Copernicus programme, which aims at providing users (mainly policy makers and 
public authorities) with reliable and up-to-date information related to environmental and security 
issues. The climate change and atmosphere monitoring services in particular rely heavily on 
observations from current and future satellite instruments measuring both key meteorological 
variables such as  temperature and humidity, and atmospheric composition, including greenhouse 

gases and health-endangering pollutants.  

For these services to be reliable and effective, it is a prerequisite  that the underlying data  sets are 
fit-for-purpose, i.e. that their quality is assured and that they meet user requirements. Quality 
assurance in the context of satellite remote sensing has been defined in the context  of the CEOS- 
and GEO-endorsed Quality Assurance for Earth Observation (QA4EO)  framework, as the need for 
fully traceable Quality Indicators. In practice, the extent to which the satellite measurements agree 
with ground-based reference measurements is an essential such quality indicator. Clearly, this 
agreement needs to be assessed in the context of  the reported uncertainties, both those on the 
satellite and on the reference measurements. As such, traceability of the data production and of the 
associated uncertainties is another crucial quality indicator. The H2020 project GAIA-CLIM aims 
specifically at improving the traceability and uncertainty characterization of the sub-orbital 
reference measurements used to assess the  quality of the satellite data sets. Moreover, it also 
addresses the uncertainty budget of these crucial satellite-to-reference comparisons from which 
several quality indicators are derived, but which require careful consideration of the additional 
errors due to co-location mismatch, i.e. the unavoidable differences in measurement times, 

locations and spatiotemporal smoothing.  

1.1. Context and aims of this document 
 

Two key scientific objectives of GAIA-CLIM concern the uncertainties on sub-orbital reference 
measurements and the additional uncertainties related to the intercomparison of measurements 
from different instruments and obtained at different locations and me asurement times: (1) objective 
S3, mainly targeted within WP2, is to provide reference quality measurement uncertainties that are 
traceable to recognized measurement standards, and (2) objective S4, mainly targeted within WP3,  
is to understand and quantify the metrology of a data comparison, including the additional 
uncertainties that arise from spatiotemporal mismatches between both observing systems .  As such, 
these objectives target the uncertainty budget of a comparison between a satellite measurement 
and a sub-orbital reference measurement, which, in the ideal case of perfect co-location, can be 

represented mathematically as: 

2

2

2

121
uukmm  (1) 

where the left-hand side represents the observed difference between both measurements, k is a 
coverage factor, and u1 and u2 represent the measurement uncertainties (e.g. Immler et al., 2010).  
However, in case of spatiotemporal mismatch, i.e. non perfect co-location, an additional uncertainty 

term, σ2, must be included: 

2

2

2

1

2

21
uukmm   (2) 



    File: GAIA-CLIM_WP3_GAID_input.pdfGAIA-CLIM report 

File: GAIA-CLIM_WP3_D3.2.docx 
GAIA-CLIM technical report 
D3.2 – Generic metrology aspects of an atmospheric composition measurement and of data comparisons 
Date of issue 1 March 2016 / Version 1 
 

 Page 6-48 

The present document, Deliverable 3.2, represents key output from WP3, and targets mainly 
objective S4, i.e. σ2 in Eq.(2). In particular, it describes the spatiotemporal metrology of atmospheric 
composition measurements and their intercomparison  at a generic level, illustrated with some 
practical examples.  It sets the stage and will serve as a theoretical reference document for three 
future deliverables: D3.4, reporting on measurement mismatch studies and their impact on data 
comparisons (due M24), D3.5, the set of tools that will be integrated into the Virtual Observatory 
(also due M24), and D3.6, a library of spatiotemporal uncertainty estimates (due M30).  Figure 1 
visualizes the relation between the current deliverable, the different tasks within WP3, and the 

corresponding future deliverables.    

 

Figure 1:  Inter-linkages between D3.2 and other deliverables from WP3. Because WP2 also deals with some 
metrology aspects and provides the measurement uncertainties required for uncertainty budget closure aimed 

for in Task 3.2 and deliverable D3.4, it is included in this graph. 

Since the ultimate aim is to close the uncertainty budget of a comparison between satellite  and sub -
orbital reference measurements (cfr. Eq. 2), the availability of reliable and traceable measurement 
uncertainties (S3, WP2)  is essential to the work performed within WP3. Consequently, the present 
document will also briefly cover those metrology aspects that are primarily dealt with by WP2, in 
this way further clarifying which metrological aspects are (or should be)  part of the reported 
measurement uncertainties, and  which are to be taken into account in addition to the measurement 

uncertainties when performing intercomparisons.   

Note that the current document deals with Level-2 data only, i.e.( retrieved) columns and profiles, as 
this is the focus of WP3 within GAIA-CLIM. For Level-1 (ir)radiance data, similar considerations may 
apply, but this is beyond the scope of the work planned here. Level -3 data, i.e. gridded averages of 
Level-2 data, add another layer of metrological issues, in particular regarding representativeness of 
the averages due to the particular sampling patterns of the sounders and networks, but also this 

topic is largely beyond the scope of the current document. 
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1.2. Principles of metrology 
 

In its broadest definition, metrology concerns the “science of measurement and its application” 
(BIPM, 2012). This includes in particular (1) the definition of internationally accepted units of 
measurement, (2) the realisation of these units of measurement in practice, and (3) the application 
of chains of traceability linking measurements made in practice to reference standards, i.e. making 
these measurements “metrologically traceable”.  In practice, these aims give rise to a large field of 
research focused on characterizing measurements and measurement systems in exhaustive detail, 

covering a wide variety in measurement (system) properties, as illustrated by Figure 2. 

 

Figure 2: A (limited)  overview of measurement (system) properties typically investigated and quantified in 
metrological research.  This graph is Fig. A.10 from the VIM (BIPM, 2012).  

In the context of remote sensing for earth observation (EO), metrological studies usually aim for an 
explicit description linking the measurement (often a retrieval of a physical parameter from an 
(ir)radiance measurement) to an SI standard through an unbroken chain of calibrations and 
documented processing steps. These traceability chains are described in more detail in Section 2, 
including the role these chains play in assessing the uncertainty on the measurement or retri eved 
quantity. However, there are additional properties of measurements that are not as commonly 
studied but still of great importance when comparing the measurement with other measurements 
or with model output, which are also to be considered part of the field of metrology. These include 
the sampling and smoothing properties, in the vertical, horizontal, and temporal dimension. This is 
further elaborated in Section 3.  As already touched upon in Section 1.1, when comparing 
measurements additional uncertainties arise due to imperfect co-location (i.e. everything making up 
σ2 in Eq. (2), and their quantification is the aim of what can be called “ comparison metrology”. 
Section 4 expands the different aspects to be treated for a detailed understanding of these 
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additional uncertainties, and several practical methods to quantify them are presented in Section 5.  

A first –conceptual- decomposition of σ2  is already described in the following section. 

 In  summary, the current document deals with the following metrological aspects of remote sensing 

measurements and their (inter-)comparison: 

 Traceability to SI standards (Section 2), 

 Spatiotemporal properties of a single measurement (Section 3), 

 Measurement comparisons and co-location mismatch (Section 4). 

1.3. Metrology of a data comparison and associated 
errors 

 

In most data comparison endeavors, such as ground-based validation exercises, a compromise must 
be made between on the one hand abundance of comparisons pairs, and on the other hand 
additional comparison errors, not related to the actual measurements uncertainties  but due to non-
perfect co-location in space and time. This non-perfect co-location is a consequence of both a 
difference in spatio-temporal sampling, i.e. a satellite pixel centre never coincides exactly with the 
ground station location, and a difference in resolution, i.e. in the way each instrument has a 
smoothed perception of the inhomogeneous and variable atmosphere. This is visualized 

conceptually in Figure 3.   

 

Figure 3: Conceptual visualization of the metrology of a satell ite-to-ground measurement comparison. Ideally, 
both measurements are point-like in space and time, and coincide perfectly. In practice, the sampling pattern 
of the satell ite sounder and the fixed locations  of the ground network induce sampling difference errors. 

Furthermore, differences in resolution, or, more broadly, in area of actual measurement sensitivity, induce 
additional smoothing difference errors. Figure reproduced from Verhoelst et al. (2015).  

A formal representation of the uncertainty budget of a comparison was already explored by Rodgers 
(1990,2000) and by Rodgers and Connor (2003), and further elaborated by von Clarmann (2006). 
Lambert et al. (2012) includes the multi-dimensional perspective, dealing with horizontal smoothing 
errors and errors due to less than perfect co-incidence. While the above-mentioned papers deal with 
uncertainties in terms of covariance matrices, and thus assume the errors to have a Normal 
distribution, it is instructive to focus first on the decomposition of individual differences (i.e. per 
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comparison pair) in terms of the different error sources, before deriving an uncertainty budget. A 

pair of co-located measurements, xSAT and xGND, can be related to each other as: 

totalGNDSAT
xx  , (3) 

with 

DddxDSsysSATsysGNDrandSATrandGNDtotal 4/4,,,,
  , (4) 

where 

 randGND ,
 and randSAT ,

 represent the random errors related to the measurement uncertainty 

of both sensors, 

 sysSAT ,
 and sysSAT ,

 represent the systematic errors related to the measurement uncertainty 

of both sensors, 

 
DS 4

 represents the so-called smoothing difference error, which contains horizontal, vertical 

and temporal components, and 

 
Dddx 4/

 represents the so-called sampling difference error, which also contains horizontal, 

vertical and temporal components. 
 
The sampling difference error is the error that would occur even if the measurements were point-
like, but not perfectly coinciding. Note that this is not the same as the sampling error resulting from 
an incomplete sampling of a signal (e.g. von Clarmann, 2006). The smoothing difference error is the 
error that would occur even if the measurements have coinciding nominal locations (e.g. station 
location and pixel centre), but different resolutions.  
From the error budget described in Eq. (4), it is in principle possible to derive an uncertainty budget 
in terms of variances (column measurements) or covariance matrices (profile measurements),  e.g. to 
calculate σ2 in Eq. (2), but that would implicitly assume a Normal distribution of the errors, and the 
absence of correlations between the different terms. As shown in Verhoelst et al. (2015), these 
assumptions are not always valid, and it is therefore advised to investigate errors, and their 

probability density functions (PDFs), instead of uncertainties, whenever possible.  

1.4. Definitions 
 

The nomenclature followed throughout this document is based as far as possible on the 
international conventions published by the Bureau International des Poids et Mesures (BIPM) in the 
form of two key documents: the Vocabulaire International de Métrologie (VIM), and the Guide to the 
expression of Uncertainty in a Measurement (GUM), see also Sect. 1.5. Further definitions were 
taken from a list of authoritative documents, and compiled into a reference table in the framework 
of the EC FP7 project QA4ECV (http://qa4ecv.eu). These conventions are applied strictly in the 
current document, and they are provided as Annex A  for reference. Frequently used terms and 
specific concepts not defined in the QA4ECV table are listed below. Note that these are consistent 
with the summary on terminology compiled within GAIA-CLIM as the “Guide to Uncertainty in 
Measurement and its Nomenclature”. 
  

 Metrology: Definition 2.2 in the VIM: “science of measurement and its application (NOTE: 
Metrology includes all theoretical and practical aspects of measurement, whatever the 
measurement uncertainty and field of application).” 

http://qa4ecv.eu/
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 Measurement error: Definition 2.16 in the VIM: “Measured quantity value minus a 

reference quantity value”.   

 Systematic measurement error: Definition 2.17 in the VIM: “component of measurement 

error that in replicate measurements remains constant or varies in a predictable manner”  

 Random measurement error: Definition 2.19: “component of measurement error that in 

replicate measurements varies in an unpredictable manner” 

 Measurement uncertainty: Definition 2.26 in the VIM: “non-negative parameter 
characterizing the dispersion of the quantity values being attributed to a measurand, based 

on the information used” 

 Measurement bias: Definition 2.18 in the VIM: “estimate of a systematic measurement 
error” 

 Uncertainty budget: Definition 2.33 in the VIM: “statement of a measurement uncertainty, 
of the components of that measurement uncertainty, and of their calculation and 

combination” 

 Error budget: Undefined in the VIM, but easily derived from the definition of the uncertainty 
budget: “statement of a measurement error, of the components of that measurement error, 

and of their calculation and combination” 

 Smoothing error: the difference between the measurement and the truth at the nominal 

measurement location due to the smoothing properties of the instrument 

 Smoothing difference error: Not to be confused with the smoothing error, the smoothing 
difference error represents the difference between two me asurements, due to the 
differences in smoothing of the truth. E.g. for measurements with very similar smoothing 
properties, the smoothing difference error may be much smaller than the individual 
smoothing errors. See also Section 1.3.  

 Sampling error: the difference between the measurement and the truth due to an 
incomplete sampling of the signal 

 Sampling difference error: Not to be confused with the sampling error, the sampling 
difference error represents the difference between two measurements due to differences in 

sampling of the truth.  See also Section 1.3. 

 Co-location mismatch: Generic term implying the mismatch between two co-located 
measurements in spatiotemporal smoothing and sampling. It causes smoothing and 

sampling difference errors in the horizontal, vertical and temporal domains.   

1.5. Related documents and projects 
 

Within GAIA-CLIM 

 The Gap Assessment and Impacts Document (GAID), in particular the gaps identified by 
WP2 and WP3, identified as 2.xx and 3.xx  

 Deliverable D3.1, the initial input from WP3 to the GAID, which includes a literature review 
 The GAIA-CLIM Guidance Note Guide to Uncertainty in Measurement & its Nomenclature  
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 Deliverable D3.4 (upcoming): Measurement mismatch studies and their impact on data 
comparisons 

 Deliverable D3.6 (upcoming): Library of smoothing/sampling error estimates for key 
atmospheric composition measurement systems, and smoothing/sampling error estimates 

for key data comparisons  

Nomenclature and metrology principles 

 VIM, 3rd edition: International Vocabulary of Metrology – Basic and General Concepts and 
Associated Terms (VIM 3rd edition) JCGM 200:2012 

 GUM: Evaluation of measurement data – Guide to the expression of  
uncertainty in measurement , JCGM, JCGM 100:2008,  2008, 
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf  

 Data Modeling for Metrology and Testing in Measurement Science , Pavese, F. & Forbes, A. 
B. (Eds.), Springer Science + Business Media, 2009 

 Measurement Uncertainty Analysis Principles and Methods, NASA Measurement Quality 
Assurance Handbook – ANNEX 3, 2010 

 Annex A of the current document: the QA4ECV terms and definitions 

 

Related projects 

 QA4ECV (www.qa4ecv.eu): Quality Assurance for Essential Climate Variables, aims at 
“developing an internationally acceptable Quality Assurance (QA) framework that provides 
understandable and traceable quality information for satellite data used in currently evolving 
climate and air quality services.” It serves in particular as preparation for the Copernicus 
Climate Change Service. 

  FIDUCEO (www.fiduceo.eu): Fidelity and uncertainty in climate data records from Earth 
Observations aims at building “nine new climate datasets from Earth Observation using a 
rigorous treatment of uncertainty, informed from the discipline of metrology .”  

 MetEOC/MetEOC-2 (http://www.emceoc.org) aims at improving the metrology in Earth 
Observation (EO), and includes WPs on satellite calibration test sites, climate indicators, SI 
traceability of biophysical parameters, solar irradiance, and ECV measurements.  

 GeoMON (website no longer active), was an EC FP6 project focusing on atmospheric 
composition and with multiple aims, ranging from better data production to validation and 
integration in models. It dealt extensively with the characterization of the  horizontal 
smoothing properties of key atmospheric composition measuring instruments.  

 NORS (nors.aeronomie.be), the “demonstration Network Of ground-based Remote Sensing 
observations in support of the Copernicus Atmospheric Serv ice” was an EU FP7 project 
aimed at demonstrating the value of ground – based remote sensing data from the Network 
for the Detection of Atmospheric Composition Change (NDACC) for quality assessment and 

improvement of the Copernicus Atmospheric Service products.  

  

http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.qa4ecv.eu/
http://www.qa4ecv.eu/lexicon/2#QA
http://www.fiduceo.eu/
http://www.emceoc.org/
http://nors.aeronomie.be/
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2. Metrology, part I: Traceability chains and uncertainty 
estimates 

 

For a (sub-orbital) measurement to be a reliable reference, it is crucial that it can be linked to an 
authoritative standard (e.g., Système International, SI) through an unbroken and documented chain 
of well-characterized calibrations and operations. In other words, it requires metrological 
traceability.  Such traceability is achieved for selected reference measurements such as the 
temperature and humidity profiles from radiosondes contributing to the GCOS Reference Upper Air 
Network, GRUAN (Immler et al., 2010). Work in that direction is ongoing for many other instrument 
types and networks, e.g., with a focus on the Network for the Detection of Atmospheric Composition 
Change (NDACC) in WP2 of GAIA-CLIM, in other EU-supported projects such as QA4ECV, and in other 
initiatives such as the SPARC/IGACO-O3/IOC Ozonesonde Data Quality Assessment (O3S-DQA).  
Similar efforts exist to improve the traceability of satellite data records, e.g. within the EU H2020 
projects FIDUCEO and MetEOC. Section 2.1 briefly illustrates what is meant by a traceability chain for 

data production.  

A key motivation for such (metrological) traceability is the determination of the uncertainties on the 
final measured or retrieved geophysical quantities by proper propagation and addition of the 
uncertainties introduced by the different processing steps into a total uncertainty budget. This 

process is described further in Section 0.  

 It must be noted though that these uncertainties are at least partly theoretical and/or approximate 
in nature: they are based on measurement models, uncertainty propagation methods (e.g., 
linearized analytical propagation), and auxiliary data which are often affected by the same 
limitations as the measurement and retrieval process themselves. Moreover,  for non-reference 
measurements, the chain itself usually is incomplete and includes steps for which uncertainty 
information is virtually impossible to obtain, for instance due to manufacturers not sharing such 
information. On top of that, uncertainty propagation usually concerns only the effect of random 
errors, and little can be done to quantify systematic errors when these have not all been calibrated 
out.  Consequently, measurements and their uncertainties require to be validated by independent 

means. This is the topic of Section 0.    

2.1. Metrological traceability of data production 
 

As an example, Figure 4  presents a high-level traceability chain for an O3 column products derived 
from nadir satellite measurements of UV-Vis scattered light. It covers the processing from calibrated 
radiance measurements to retrieved ozone column. A similar chain can be constructed which links 
the radiance measurement to both the detector output and the calibration files characterizing the 
detector properties in direct relation to the SI units.  Most of the items in this chain can be 
decomposed further, down to the level of (auxiliary) data sources, equations, and elemental 
processing algorithms, including version numbers and references to essential documentation such as 
the Algorithm Theoretical Basis Document (ATBD).  In practice, different maturity levels of 

traceability can be distinguished.  Within the EU FP7 project QA4ECV, these are: 

A. Basic processing information, 
B. Detailed processing and uncertainty information, 

C. Metrological traceability. 
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For most of the ECVs and instruments addressed by GAIA-CLIM, traceability is still limited (typically 

around level B), and progress on this is a key aim of WP2.  

 

Figure 4: Example of a metrological traceability chain, in this case for the derivation of O 3 column products 

from nadir satell ite measurements of UV-Vis scattered light, using the GDP5 processor. Reproduced from Van 
Roozendael et al. (2012).  
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2.2. Propagation of uncertainties along the traceability 
chain of data production 

 

While the most straightforward method of assessing uncertainty is through repetition of the 
measurement under identical conditions, i.e. Type-A uncertainty determination following the GUM 
nomenclature,  this approach is rarely possible when observing (atmospheric) ECVs. Indeed, because 
of atmospheric variability, a large set of measurements would have to taken simultaneously, probing 

exactly the same air masses, which is most often neither technically nor financially feasible.  

Instead, the total uncertainty must be reconstructed from known uncertainties on the different 
processing steps and auxiliary data sets, which can be derived e ither within laboratory settings or 
through dedicated sensitivity and intercomparison tests. Clearly, the traceability chain plays a crucial 

role in collecting and combining all the uncertainty information into a total uncertainty budget.  

Propagation of uncertainties can be performed in multiple ways. If the end product can be linked to 
a more fundamental measurement with an explicit mathematical formulation, it is possible to 
propagate uncertainty due to random errors in an analytical way, under the assumption of local 
linearity, by using the first-order derivatives of the different processing steps (e.g. Boersma et al. 
2004, De Smedt et al. 2012). Alternatively, full error probability distribution functions (PDFs) could 
be propagated with Monte Carlo methods, avoiding both the assumption of Gaussian error 
distributions and (locally) linear processing steps.  Finally, this approach can be extended further to 
more general ensemble-type studies and sensitivity analyses in case of highly complex traceability 
chains (e.g. Hendrick et al., 2011, Dirksen et al., 2014).  The end result is a detailed decomposition of 
the uncertainty on the derived geophysical quantity as a function of key features of the 
measurement (and of the retrieval in case of remote sensing), as illustrated in Figure 5 for a 

radiosonde measurement of an atmospheric temperature profile.  

 

Figure 5: Total uncertainty budget for a Vaisala RS92 radiosonde temperature profile measurement, 
reproduced from Dirksen et al. (2014). 
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2.3. The need for independent validation 
 

The introduction of Section 2 already touched upon the limitations of uncertainty propagation 
through traceability chains, in particular for most satellite atmospheric sounders. Consequently, such 
data sets may have poorly quantified uncertainties, which can be random or depend on several 
influence quantities such as solar zenith angle, surface albedo, cloud cover, instrumental 
degradation, etc. To reliably assess the quality and fitness-for-purpose of satellite data sets, the 
validation with well-controlled and documented (ground-, balloon- and aircraft-based) reference 
measurements is therefore of utmost importance.    
 
The process of ground-based validation of atmospheric ECVs itself can be described in the form of a 
chain of processing and analysis steps, for which detailed protocols have already been established , 
e.g., within the FP7 projects MACC, PASODOBLE, and QA4ECV, and in the context of ESA’s GMES 
Service Element (GSE) and Climate Change Initiative (CCI) .  A detailed overview of the validation 
process is described and applied by Keppens et al. (2015) to the validation of nadir ozone profile 
data retrieved from MetOp-A GOME-2 measurements with ozonesonde and lidar measurements.    
In short, the scheme as it was elaborated further for the validation server under development in 
QA4ECV, consists of the following steps: 
 

1. Translation of user requirements into validation requirements 
2. Satellite data selection, filtering and post-processing 
3. Data content study (DCS) of satellite dataset 
4. Information content study (ICS) of satellite dataset 
5. Selection and characterisation of correlative data 
6. Identification and characterisation of co-located data pairs 
7. Homogenization: Resampling, smoothing, and conversions of representation 

systems and units 
8. Data content and information content studies of co-located satellite and correlative 

datasets only 
9. Data comparisons 
10.  Derivation of statistical Quality Indicators: bias, spread, stability, dependence on 

influence quantities 
11.  Production of a user-oriented report 
12.  Verification of compliance with user requirements 

 
Step 6 includes the delicate task of choosing appropriate co-location criteria, which requires a 
thorough understanding of the smoothing and sampling properties of the different instruments, and 
of atmospheric variability. These are the main topics of Section 3 of the current document. Steps 9 
and 10 are addressed in Section 4, which deals with the metrology of a data comparison. Also 
covered in that section are some aspects of step 7: the harmonization, e.g. , in terms of vertical 
resolution and smoothing.  
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3. Metrology, part II: Effects of spatiotemporal 
inhomogeneities 

 

As described in the previous section, metrology  of an atmospheric ECV measurement is first of all  
focused on the traceability to a community-agreed standard, and on the determination of the 
measurement uncertainty through proper propagation of different sources of known errors and 
uncertainties along the traceability chain.  In such studies, little attention is paid to the impact of 
inhomogeneities and variability in the atmospheric field on the measurement: the measurement is 
either treated as a point-like sample of the atmosphere, or the atmosphere is assumed to be 
homogeneous and constant over the measurement area and integration time. The purpose of the 
current section is to discuss the actual spatiotemporal properties of different measurement types, 
and to combine these with estimates of the natural variability to get a quantitative grip on the 
additional errors and uncertainties to be taken into account when making comparisons with models 

or with other measurements with different spatiotemporal properties.  

3.1. The inhomogeneous atmosphere 
 

An inhomogeneous and variable atmosphere will lead to additional errors and uncertainties if 
variations in the field occur at scales smaller than (or similar to) the scale of the measurement, i.e. if 
the measurement system does not satisfy the Nyquist criterion. In the EO case, the scale of the 
measurement system refers to both its sampling pattern and spatio-temporal resolution. For a 
balloon-borne sonde, this includes for instance the balloon trajectory, the detector read-out rate, 
and the detector response time.  For a retrieval based on satellite -measured (ir)radiance, this 
includes the geospatial sampling pattern, the averaging of the field over a pixel  footprint, and more 
complex radiative transfer and retrieval sensitivity along the entire line -of-sight between photon 
source and detector. Some advanced, multi-dimensional retrieval schemes taking into account 
horizontal inhomogeneity of the retrieved quantity do exist (e.g., Dinelli et al. 2010,   Kiefer et al., 
2010), but in general the atmosphere is assumed to be homogeneous and constant.  The scales of 
atmospheric variability depend strongly on ECV and atmospheric regime. For instance, the upper 
panel of Figure 6 illustrates that the total ozone column (TOC) field contains significant variability at 
a scale of a few degrees, which is a typical measurement scale for both ground-based and satellite 
observations of TOC. While the variability is almost negligible w.r.t. typical measurement 
uncertainties  in equatorial regions, this is definitely not the case at middle latitudes and near the 
polar vortex (Verhoelst et al. 2015). Part of the network providing  ground-based  reference 
measurements of TOC is indicated, illustrating how spatial variability will affect the measurements at 
different stations in different degrees, and it suggests the possibility of taking this into account in 
future network design. The bottom panel of Figure 6 presents a similar simulations but for 
stratospheric water vapour concentrations.  Information on natural variability is to some extent 
available for most of the ECVs targeted by GAIA-CLIM (see the Appendices of D3.1), but not 
necessarily down to the scale of the measurements, and the lack of knowledge on those scales is 

therefore identified as a gap in the GAID.   
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Figure 6: Upper panel: Variability of the total ozone column (TOC) field within a 3 degree radius as estimated 
with an OSSSMOSE simulation using IFS-MOZART model fields. Spatial variability of the TOC is low at equatorial 
latitudes, non-negligible w.r.t. typical measurement uncertainties at mid-latitudes, and exceptionally large 
near the polar vortex at the time of the simulation (austral spring, i .e. ozone hole conditions ). Lower panel: 

similar results for stratospheric water vapour on a scale typical for an IR l imb measurement from a polar-
orbiting satell ite (e.g. MIPAS on ENVISAT).    

3.2. Multi-dimensional nature of an atmospheric 
measurement 

 

The aim here is to introduce in general aspects of the multi-dimensional nature of an atmospheric 
measurement and available methods to quantify its multi-dimensional extent. Examples of the 

resulting errors and uncertainties are provided for illustration purposes.    
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3.2.1. Vertical sampling, resolution and sensitivity 
 

In the vertical dimension, sampling, resolution, and sensitivity are for most instruments  well 
characterized. This section is meant as a brief summary of common practices regarding the 
characterization of these properties. Moreover, the possibility to quantify vertical smoothing errors 
is highlighted since such an effort is rarely undertaken, even though it could add valuable 

information to a data product.  

Caveat: Sampling rate ≠ resolution  

While vertical sampling rates are often chosen to be similar to the intrinsic resolution of the 
measurement system, it is important to realize that those are not the same metrological property: 
the sampling grid only represents the altitudes/pressures to which a measurement is attributed, or 
retrieved, with no guarantee that one level is independent from another, nor that two subsequent 
levels represent everything in between, e.g. in the sense of an average. The vertical resolution of the 
measurement may thus be different from that sampling rate. For instance, ozonesondes usually 
have a read-out rate of one measurement every 2 seconds, corresponding to a sampling grid step of 
roughly  10 meter elevation gain when assuming a typical ascent rate of 5 m/s. However, the 
detector response time is of the order of 20-30 seconds, causing a significant smoothing of the 
atmospheric profile and corresponding to an actual vertical resolution of only  100-150 meters. Vice 
versa, in case of a very low sampling rate, part of the profile may remain unobserved. Similarly, 
retrieved vertical profiles from satellite measurements or ground-based remote sensing (e.g. FTIR, 
LIDAR) may be sampled at a relatively high number of vertical grid points, while the actual degrees-
of-freedom of the retrieval (DOF) is much lower, indicating a much lower vertical resolution, and 
potentially a large contribution from an a priori constraint in the case of an optimal estimation 
retrieval.  In the case of LIDAR measurements of aerosol properties, the actual vertical resolution is 
determined by a low-pass filter applied in the data processing to reduce measurement noise, leading 

to the introduction of the concept of effective resolution (Iarlori et al. 2015).  

The sampling properties of an atmospheric ECV measurement are usually clearly defined in the data 
product: the vertical grid is provided in either pressure levels or geopotential heights. The vertical 
resolution, i.e. the vertical smoothing of the true profile, is sometimes harder to assess. Numbers 
may not be provided, or,  if they are, they are very generic in nature. Neve rtheless, some 
quantification can be done, either from known instrumental characteristics (e.g.  the detector 
response time of an ozonesonde),  or from specific retrieval diagnostics in the case of remote 

sensing data, as detailed below.     

The vertical averaging kernel as a key diagnostic 

In the case of a remote sensing measurement, a key such diagnostic is the vertical averaging kernel, 
or AK in short. Formally, the AK is the product of the Jacobians of both the forward model (radiative 
transfer) and the retrieval or inverse model. In the context of optimal estimation (OE), one can state 
that the AK represents how the retrieval system smooths or amplifies departures of the true profile 
from the a priori. Every level of the retrieved profile has an associated AK vector, quantifying the 
sensitivity to the different levels of the true profile. Together, these AK ve ctors make up an AK 
matrix. Examples of AK matrices are shown in Figure 7. Averaging kernels have been evaluated since 
the early years of remote sensing, in particular in geological remote sensing in the 60s (e.g. Backus 

and Gilbert, 1968), and since the 70s also in atmospheric remote sensing (e.g. Rodgers, 1976).   
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Figure 7: Left-hand panel: Vertical averaging kernel matrix (AKM) for an ozone profile retrieval from a limb IR 

emission sounder.. This example corresponds to a  well -behaved retrieval with most of the sensitivity on or 
near to the diagonal, indicati ng good vertical resolution. Right-hand panel: Vertical AKM for a nadir ozone 
profile retrieval from a backscattered UV-Vis sounder. This corresponds to a more challenging retrieval, 
resulting in sensitivity far from the diagonal.    

Rodgers (2000) shows how different quantities derived from the AK characterize the vertical 

resolution, sampling and sensitivity. These include:   

 The DFS (Degree of Freedom of the Signal), quantifies the number of independent pieces of 
information contained within the retrieved atmospheric state  vector. It is computed as the 
trace of the AK. 

 Vertical resolution can be quantified from the AK in various ways, but the aim is to 
characterize the spread of the sensitivity around the diagonal for each retrieval level. This 
measure thus captures to what extent the retrieval at a certain level is sensitive to the true 
state at lower and higher levels. Typical metrics include full -width-at-half-maximum (FWHM) 
measures, or the Backus-Gilbert spread.  

 A centroid offset, computed as the difference between the actual centroid of the sensitivity 
for a certain level and nominal  altitude of that level, indicates whether the retrieval 
sensitivity is centered on the attributed retrieval level. If this is not the case, one can expect 
significant measurement bias, depending on the vertical structure of the atmospheric field.  

 The sensitivity of the retrieval at a given level is defined as the sum of the elements of the  
AK vector corresponding to that level. It is thus an integrated sensitivity to the entire true 
profile. If its value is significantly below unity, the measurement is at that level strongly 

influenced by the regularization, e.g. the a priori profile in case of OE.  

An illustration of vertical resolution as estimated from an AK matrix is provided in Figure 8.  
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Figure 8: FWHM (yellow line) of the averaging kernels  of MIPAS ozone profile retrievals. This FWHM  is a proxy 
of the vertical resolution of the measurement. The green line represents the grid step size, i .e. the sampling 
rate, which is well below the actual vertical resolution. Reproduced from Laeng et al. (2015).  

Quantifying vertical smoothing errors 

Nowadays, AKs are widely used to quantify and verify the vertical metrological properties of a 
remote sensing measurement. Additionally, If a high vertical resolution estimate of the true profile is 
available, the AK can be used to estimate the errors and uncertainties that the smoothing properties 
of the measurement system induce: one only has to compare the high-resolution profile with the 

same profile after application of the AK matrix on the difference with the a priori profile: 

)(
ahighresVhighresasmoothing

xxAxx  , (5) 

where 
a

x  is the a priori profile,  
V

A  is the vertical averaging kernel, and highres
x is high-resolution 

estimate of the true profile, e.g. from a sonde measurement. However, such a quantification of the 
vertical smoothing errors and uncertainties is not often undertaken, and for the ECVs dealt with in 

GAIA-CLIM, no such information is made available in the data files.   

Methods to minimize errors due to differences in vertical sampling and smoothing properties when 

comparing different types of measurements are discussed in Sect. 4.1 

3.2.2. Horizontal resolution and sampling 
 

Historically, horizontal resolution properties of atmospheric composition measurements have not 
been given the same level of attention as  the vertical domain. Nevertheless, in the presence of 
atmospheric inhomogeneities and gradients at a scale smaller or similar to the horizontal resolution 
of the measurement , horizontal smoothing errors are just as likely to occur as vertical smoothing 
errors. Pioneering work in the computation and use of horizontal averaging kernels exists (von 
Clarmann et al. 2009, Ridolfi et al. 2007, Cortesi et al. 2007), see e.g. Figure 9,   and more pragmatic 
estimates of the horizontal resolution of several types of ground-based and satellite instruments 
have been derived in the EU FP6 project GEOmon (e.g. Lambert et al., 2011), and in the EU FP7 
project NORS. Still, such a quantification of horizontal smoothing properties is far from common 

practice, and the resulting errors are rarely quantified.  
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Figure 9: Upper row: Conceptual i l lustration of a  scanning sequence for a l imb IR emission sounder (left) and 

for a l imb UV-Vis scattered light sounder (right). It can be seen that the orbital progression during the 
measurement sequence causes a shift in tangent point, and in orientation of the light paths.  Lower row: The 
corresponding horizontal averaging kernels for ozone profile retrievals.  From von Clarmann et al. (2009) and 
Vandenbussche et al. (2010).  

 A key point is that horizontal resolution not only depends on obvious parameters such as for 
instance the pixel footprint of a nadir satellite observation, but on the entire observation geometry, 
on the retrieval scheme in the case of remote sensing, and on  potential data post-processing such 
as measurement averaging.  A pertinent case illustrating the importance of a metrological evaluation 
of the entire measurement and retrieval chain when estimating hori zontal smoothing properties is 
that of zenith-sky observations of scattered UV-Visible light during low-sun conditions. While the 
instrument is pointed at zenith, the bulk of the absorption processes determining the signal from 
which the trace gas concentrations are retrieved occurs along the line-of-sight between the sun and 
the scatterer, and consequently covers a large horizontal extent in the twilight setting.  This is 

illustrated in Figure 10.  

 

Figure 10: Twilight observations of zenith-scattered light are sensitive to trace gas concentrations along a large 
horizontal l ine-of-sight. 

Another case of “hidden” horizontal smoothing is that of observations relying on integration times 
which  allow large airmasses to be blown through the field-of-view by the local wind field. This is for 
instance the case for LIDAR observations of stratospheric ozone, which can require up to 4 hours of 
integration time, corresponding to several hundred km of horizontal smoothing assuming a wind 

speed of the order of 100km/h at stratospheric altitudes.    
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The resulting horizontal smoothing errors are particularly large when the measurement is sensitive 
over a large horizontal area, and the atmosphere is highly variable across this region. This is the case 
for instance for solar occultation  measurements of the O3 volume mixing ratio in the UT/LS, as 

illustrated with an OSSSMOSE simulation (cfr. Section 5.4) in  Figure 11.  

 

Figure 11: OSSSMOSE simulated horizontal smoothing errors in O3 VMR measurements with SAGE II at sunrise, 
assuming global coverage, and based on ECMWF reanalysis fields and a pragmatic observation operator for 
SAGE II measurements derived from an analysis of horizontal averaging kernels (Vandenbussche et al. 201 0).  

Based on a similar OSSSMOSE simulation, Figure 12 presents a time series of horizontal smoothing 
errors in ozone volume mixing ratio measurements retrieved from limb IR emission observed with 
MIPAS on ENVISAT above the Antarctic station of Dumont d’Urville. A clear feature are the large 
smoothing errors in austral spring, which are a consequence of the large variability in TOC at the 

edge of the polar vortex, as illustrated already in the lower panel of  Figure 6.  

 

Figure 12: Simulated horizontal smoothing errors for MIPAS/ENVISAT measurements of ozone volume mixing 

ratio (VMR)  at 45km altitude above Dumont d'Urvil le (Antarctica). The smoothing error is calculated here as 
the relative difference between the horizontally smoothed O3 VMR and the point-like value at the nominal 
location of a MIPAS profile, i .e. the location of the tangent point at 30km altitude.  The dashed lines represent 
the 1-month running mean and median smoothing error. The solid l ines represent running 1 -month  16% and 

84% quantiles. The smoothing errors are seen to be extremely large when a strong polar vortex is present and 
ozone is depleted, i.e. in Austral spring. Moreover, the non-zero mean (and median) indicate that also a 
systematic error is introduced.  The simulation was performed with the OSSSMOSE system, described in more 
detail  in Section 5.4.  
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Also the horizontal sampling properties depend strongly on the measurement type and platform. 
The sampling can be relatively  complete and at high spatial frequency, e.g. from nadir satellite 
sounders with small pixel sizes and large swaths, and consequently short revisit times, such as the 
upcoming TROPOMI instrument on Sentinel-4p. On the other hand, for (stellar) occultation and limb-
emission measurements,  the sampling is usually much sparser and often highly inhomogeneous. 
Also for most ground-based instruments, both the network sampling and the sampling properties of 
a single measurement are limited and inhomogeneous. This is the case for instance for balloon-
borne sondes. Balloon drift over an entire ascent, which takes roughly 1.5 hours, depends on wind 
strength and direction, but >100km is not uncommon. A detailed analysis of radiosonde drift 
statistics on the global level was performed by Seidel et al. (2011), see the left-hand panel of Figure 
13 for an illustration.  Because the wind has a preferred direction at many sonde -launching stations,  
the sampling of a sonde dataset is often not homogeneous around the station location (right-hand 
panel of Figure 13).   Most atmospheric variables measured by balloon sondes vary significantly on 

these scales, and balloon drift will therefore lead to non-negligible differences w.r.t. the launch site.  

 

Figure 13: Left-hand panel: Contour plot of balloon drift dis tance for the global radiosonde network, for 

December, January, and February, as derived by Seidel et al. (2011). Right-hand panel: Balloon trajectories are 
not distributed homogeneously around the NDACC station of Uccle, B., due to predominantly Westerly winds 
(Figure courtesy of D. Hubert, BIRA-IASB).  

 

3.2.3. Temporal sampling and resolution  
 

While the integration times of measurements of meteorological variables are usually short enough 
to consider the atmosphere constant during the measurement, this is  not always  the case when 
observing trace gas concentrations. For instance, LIDAR measurements of stratospheric ozone 
require several hours of integration time, which is long enough for the measurement to be affected 
by variations in the ozone profile due to transport. Similarly, zenith-sky observations of NO2 columns 
during twilight are affected by the rapid photolysis (or formation) of NO2  with increasing 

(decreasing) solar radiation during the measurement sequence.    

Besides long integration times, measurements are sometimes averaged into e.g. daily means to 
improve the signal-to-noise ratio and to increase the spatial representativeness of the 
measurement, which can be beneficial when comparing to satellite measurements with large ground 



    File: GAIA-CLIM_WP3_GAID_input.pdfGAIA-CLIM report 

File: GAIA-CLIM_WP3_D3.2.docx 
GAIA-CLIM technical report 
D3.2 – Generic metrology aspects of an atmospheric composition measurement and of data comparisons 
Date of issue 1 March 2016 / Version 1 
 

 Page 24-48 

footprints. Still, this also constitutes a form of temporal smoothing and one must be aware that 
processes other than transport can potentially alter the atmospheric field, e.g. photo-chemistry or 
local sources and sinks.  This approach of using daily means  is for instance  common in total ozone 

column measurements with direct-sun instruments such as Dobsons and Brewers.    

Finally, one must be aware of the possibility that large horizontal smoothing introduces  a hidden 
form of temporal smoothing through local solar time variation over the area of measurement 
sensitivity.  The solar zenith angle therefore changes over the measurement footprint, and this must 
be taken into account when studying ECVs with a pronounced diurnal cycle, whether the latter is 

due to photo-chemistry of other diurnal phenomena such as condensation and evaporation.   
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4. Metrology, part III:  Data comparisons 
 

In this section, the characterization of individual measurements as described in the previous sections 
is integrated into the metrology of a comparison between satellite and ground-based reference 
measurements. Returning to Eq. (4) in Section 1.3,  Section 2 provides the random and systematic 

errors related to the measurement uncertainties (
rand

 and sys
 ) and the concepts explored in 

Section 3 allow a quantification of the smoothing difference errors (
DS 4

 ). In the current section, 

the total error budget is explored by also including the sampling difference errors (
Dddx 4/

 ), which 

depend on the way the co-location is performed.  

It is well outside the scope of this document to cover all possible combinations of satellite and 
ground-based sounders, for all possible atmospheric variables, and for all methods of co-locating 
measurements. Rather, one case study is elaborated in Section 4.3, illustrating the metrology of a 
comparison and the different error terms that have to be quantified in order to close the uncertainty 
budget and to derive meaningful conclusions on the agreement between satellite and reference 
measurements.  Two essential topics are touched upon before reporting on that case study: (1) the 
methods that are available to associate satellite with reference measurements, i.e. ways of 
generating co-located measurement pairs, and (2) harmonization of data sets in terms of vertical 
resolution and sensitivity. While mismatches in vertical resolution are in principle a part of the more 
general spatiotemporal mismatches, they are dealt with separately in the validation process because 
methods exist to harmonize the data to a common vertical resolution. This is possible in the vertical 
dimension because most measurement techniques offer a continuous vertical sampling within their 
measurement range, i.e. there are no unobserved gaps between subsequent altitude levels. This 
allows the use of regridding techniques without introducing large interpolation uncertainties.  That is 
not the case in the horizontal and temporal dimensions, which are  characterized by poor sampling 
of the atmospheric signals: the distance between two stations is much larger, and the revisit time of 
the satellite sounder much longer, than the small scales of variability of the atmosphere.  
Consequently, horizontal or temporal interpolation is not advised, and the errors and uncertainties 
due to co-location mismatch must be quantified a posteriori, e.g. using auxiliary data.  

4.1. Co-location criteria 
 

Several methods for co-locating satellite measurements with ground-based reference 
measurements exist, ranging from basic constraints on geometrical distance and time, to more 
elaborate criteria including information on atmospheric dynamics. Which method is most 
appropriate depends on a multitude of factors, including the concerned variable and the application.  
For instance, near-real-time (NRT) validation services of a stratospheric variable with low 
spatiotemporal variability can be performed with basic geometric co-location methods, while  a 
more advanced assessment of a tropospheric variable, susceptible to l ocal sources and sinks, may 
require detailed airmass matching including back-trajectory calculations and a full estimation of the 

actual area of sensitivity of the measurement.  

While it is outside of the scope of the current document to cover an extensive review of all methods 
with their (dis)advantages, several often-used methods are nevertheless listed below, without the 
ambition of exhaustive. We refer to the annexes of D3.1 for a literature review covering applications 

of most of these criteria.  
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 Great-circle distance and time: d < D and t < T, where d and t are usually the differences 
between the nominal locations and measurement times. The constraints D and T depend 
heavily on the variable under study, ranging for instance from a few km and minutes 
(humidity validation) to 1000km and 12h (stratospheric  CH4 validation). 

 Latitude, longitude, and time constraints: many atmospheric variables display less 
variability along parallels than they do along meridians. Separate constraints on latitude and 
longitude differences allow to take this into account. 

 Static airmass matching: For several types of measurement, pragmatic observation 
operators have been constructed which quantify the actual area of measurement sensitivity 
as e.g. a multi-dimensional polygon (see e.g. Lambert et al., 2011). From these polygons, 
several optimized co-location can be derived, formalizing the requirement that both 
measurements must to some extent sample the same airmass. For instance, one can require 
a certain intersection between both polygons. This is illustrated in Figure 15. 

 Potential vorticity: A constraint can be placed on the difference in potential vorticity 
between satellite and reference measurement, PV.  This is a constraint on the dynamical 
properties of the air parcels, ensuring that they have similar origins and hence similar trace 
gas concentrations. 

 Back trajectories: A more elaborated way of taking into account the dynamical history of air 
parcels is by calculating back trajectories using wind fields from, e.g., meteorological 
analyses. This technique is particularly useful when dealing with large time differences 
between both measurements, which are sometimes unavoidable, for instance when 
validating a day-time satellite overpass with a night-only reference measurement (e.g. from 
a LIDAR). Note that this technique assumes that the tracked molecule or parameter acts as a 
pure dynamical tracer.  

 
After applying these constraints, one may either have no co-locations, in which case a more relaxed 
criterion is adopted out of necessity, or multiple pairs satisfying the criterion in which case a 
“closest” match is usually extracted, if necessary through a weighted combination of the different 
criteria. For instance, distance and time can be combined into an “effective” distance by assuming a 
certain wind velocity.  
In practice, even the more sophisticated criteria are usually not sufficient to fully avoid additional 
errors in the comparison due to co-location mismatch. This is illustrated in Section 4.3.  
 

 

4.2. Differences in vertical resolution and sensitivity 
 

The issue of comparing profile measurements with different vertical resolution has been a topic of 
investigation already since the early days of remote sensing, and the use of vertical averaging 
kernels to study vertical resolution properties of retrieved profiles was already pioneered in the 
1970s (e.g. Rodgers, 1976).  The possibility to estimate vertical smoothing errors using the averaging 
kernels was presented in Eq. (5) in Section 3.2.1. Moreover, methods exist to regrid data to a 
common vertical sampling, taking into account differences in verti cal resolution (Rodgers and 
Connor, 2003; Calisesi et al. 2005). In the context of validation with ground-based reference 
measurements, this usually implies degrading the resolution of the reference profile to that of the 

profile retrieved from the satellite observations. The profile at reduced resolution is computed as: 
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)(
21,2 aValowres

xxAxx  , (6) 

where 
1

x  is the low resolution (retrieved) profile,  
2

x is the high-resolution reference profile, 
a

x is 

the a priori used in the retrieval of 
1

x , and 
1V

A the corresponding averaging kernel.  

As described above, these methods rely on the availability (and accuracy) of vertical averaging 
kernels, but they can be extended to a more general method using generic functions with a similar 
bandwidth, such as a Gaussian with a FWHM corresponding to the vertical resolution. In such an 
application the vertical resolution may be estimated from means other than the AKs.  In practice, 
these procedures require care on several technical aspects, described i n detail in Keppens et al. 
(2015). Figure 14 illustrates the regridding, including smoothing to a lower resolution, of a high-
resolution ozonesonde measurement.  This approach of bringing satellite measurement and 
reference measurement to the same vertical grid and resolution is common place now in most 

validation exercises.  

 

Figure 14: An il lustration of different smoothing and regridding approaches applied to a high -resolution 
ozonesonde profile (extended with a climatology above 32km). They range from a simple l inear interpolation, 
not taking into account the smoothing properties of the system that is emulated (here a GOME-2 nadir ozone 

profile retrieval), to a more advanced approach including the use of the appropriate GOME-2  vertical 
averaging kernel.  Figure courtesy of S. Compernolle (BIRA-IASB), following recipes provided by Keppens et al. 
(2015). 

4.3. Case study 
 

To illustrate the role of the different error terms in Eq. 4, and their impact on the total uncertainty 
budget, a case study is developed here which focusses on total ozone column (TOC) comparisons 
between on the one hand ground-based measurements obtained with the (SAOZ) ZLS-DOAS 
instrument at the NDACC station of Dumont d’Urville on Antarctica, and on the other hand 
GOME/ERS-2 nadir satellite measurements. These comparisons were originally performed for a 
validation exercise in the context of ESA’s Ozone CCI (Koukouli et al., 2015), but without a detailed 
assessment of the comparison metrology and related co-location errors. Verhoelst et al. (2015) 
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revisit these comparisons and use the OSSSMOSE system (Section 5.4) to simulate the measurement 

comparisons and quantify the impact of the different co-location mismatch errors.  

 

Figure 15: Left hand panel: Il lustration of a few co-located total ozone column (TOC) measurement pairs made 
up of (1) ground-based ZLS-DOAS measurements obtained with the CNRS/LATMOS SAOZ instrument at the 
NDACC station of Dumont d’Urvil le in Antarctica (red disk) and represented by the magenta polygons which 

describe the actual area of measurement sensitivity, and (2) GOME/ERS-2 nadir UV-Vis measurements 
represented by their ground pixels (blue dashed lines) and the additional sensitivity towards the sun (cyan). 
The co-location criterion used here required a non-zero intersection between the measured airmasses. Right-
hand panel: Time series of TOC measurements from these co-located measurement pairs, including 1-month 

running means. 

 

Figure 16: Left-hand panel: Time series of the relative differences between the measurements co-located in 
Figure 15. The RMSE of these differences is almost twice as large as the combined measurement uncertainty 

(magenta lines). Right-hand panel: 3-month running median (upper panel) and spread (lower panel) of the 
differences shown in the left-hand panel. The median difference is used here as a proxy for systematic errors, 
while the spread captures those errors that are predominantly random in nature. These curves reveal clear 
seasonality in the systematic and random components, well above what can be accounted for by the 

combined measurement uncertainty (magenta line). It will  be shown here that this is not necessarily due to 
shortcomings in the data or their uncertainties, but that these discrepancies mostly result from co-location 
mismatch. 
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Figure 15 presents a visualization of a small subset of the co-locations, and the time series of 5 years  
of co-locations. From these time series, it is obvious that the TOC field is highly variable at this 
station, which is often close to or within the ozone hole (less than 220DU by definition), depending 

on the exact shape of the polar vortex.  

Figure 16 reveals that the differences between co-located measurements are well above what could 
be expected from the combined measurement uncertainties, and that these show clear seasonal 
structures, both in their median value over several months and in the spread. Looking at the 
separation of co-located pairs, of the order of several 100km, and keeping in mind the spatial 
variability of the TOC field near the polar vortex quantified in the upper panel of Figure 6, one can 
expect large co-location errors and any conclusion on data quality would at this point be premature. 
Indeed, Verhoelst et al. (2015) simulated these comparisons with the OSSSMOSE system, which set-
up here to apply appropriate observation operators for each measurement onto high-resolution TOC 
reanalysis fields to simulate each individual measurement (see also Section 5.4 for more details). 
These simulations can be done with the different error terms switched on or off, e.g. one can 
assume negligible measurement uncertainty, which produces differences solely due to co-location 
mismatch. Or, one can assume the measurements to be point-like and the comparisons affected 
solely by sampling mismatch, i.e. the  nominal coordinates do not coincide.  With all error terms from 
Eq. (4) included, the aim is to reproduce the curves observed in the right-hand panel of Figure 16.  

Figure 17 presents the results for this particular comparison exercise.   

 

Figure 17: Similar to the right-hand panel of Figure 16, but with the results from the OSSSMOSE comparison 
metrology simulator overlaid as colored lines. The blue lines represent the simulated errors due to differences 

in horizontal resolution, but not taking into account the offset (in space and time) in actual measurement 
locations. The red curves represent the errors due to sampling differences, i .e. the differences in measurement 
location and time, but not taking into account that the measurements also have different horizontal 

resolutions. The green curves include all  error terms: smoothing differences, sampling differences and 
measurement errors (the latter simulated as random draws from a Normal distribution determined by the 
measurement uncertainty provided with the data)., The simulation matches the observed differences 
remarkably well, indicating that the data and their uncertainties are in fact reliable, and that the large 

observed differences are almost entirely due to co-location mismatch. 

The good agreement between the total simulated error budget (in green) and the statistics of the 
observed differences (black) indicates that all error sources are accounted for. Indeed, it appears 
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that the sampling difference error (red) plays a major part in the total error budget, both in the 
random and systematic components. Smoothing difference errors up to a few percent occur as well, 
but they do not exceed the combined measurement uncertainty.  Figure 18 contains the full 
difference probability distribution function (PDF), offering a more comprehensive view than the 
median and interquantiles presented in Figure 17. The good agreement between the observed and 
simulated difference PDFs is further evidence that all error sources are properly represented in  the 
simulation. The conclusion is therefore that the large observed differences between satellite and 
ground-based measurements, which exceed the combined measurement uncertainty, do not 
indicate any issues with data quality or reported uncertainties: they can be explained entirely as due 
to spatiotemporal mismatch, in spite of the fairly sophisticated co-location criterion which required 

intersecting area’s of measurement sensitivity.  

 
Figure 18: Observed and OSSSMOSE-simulated probability distribution function of the differences between co-
located GOME/ERS-2 and CNRS/LATMOS SAOZ measurements at the NDACC station of Dumont d’Urvil le. The 
good agreement indicates that the simulation has taken into account all  significant error terms. 

Further results on total ozone column validation, including several different satellite and ground -
based instruments,  are reported in Verhoelst et al. (2015), and the extension of this approach to 

other ECVs is one of the main aims of WP3 in GAIA-CLIM.  
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5. Methods to quantify spatiotemporal mismatch 
uncertainties 

 

The sparseness of  the ground-based reference data and/or of the satellite data set, implies that co-
location criteria can often not be taken strict enough to avoid additional errors and uncertainties in 
the comparisons due to differences in sampling and smoothing. In such a case , a posteriori estimates 
of these uncertainty budget terms can still be made, with a variety of methods. Those methods 
related to work performed within GAIA-CLIM are outlined below. They range from very much data 
driven to explicit modelling of the physics and measurement metrology.  Figure 19 summarizes these 

different methods.  

 

Figure 19: Overview of different methods for a posteriori estimates of co-location mismatch errors and/or 

uncertainties. 

5.1. Criterion dependence of comparison statistics  
 

If a sufficient number of comparison pairs are available, it is possible to study the effect  of relaxing 
or tightening of the co-location criterion on the comparison statistics. The latter can be diagnostics 
such as the comparison spread (variance or standard deviation), the mean (or median), or a 
correlation coefficient. Figure 20 illustrates this approach for the correlation between aerosol 
backscatter coefficient counts from Calipso and EARLINET, as analyzed by Pappalardo et al. (2010).   
For this graph, only simultaneous measurements (i.e. within 10 minutes of each other) were used, 
but a large range of allowed horizontal separations was explored.  Already at a separation of a few 
hundred kilometer, the correlation is much smaller than for the smallest separation for which a 
meaningful correlation could be computed (D <100km), indicating strong inhomogeneity in the 

aerosol field at these scales.   
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Figure 20: Correlation between Calipso and EARLINET backscatter coefficient counts as a function of horizontal 
separation. Reproduced from Pappalardo et al. (2010), their Fig. 15.  

Likewise, Figure 21 illustrates the dependence of two diagnostics of an intercomparison of total 
ozone column measurements on the maximum allowed horizontal separation between the satellite 
observation and the ground-based reference measurement. The spread on the differences is seen to 
increase linearly with increased maximum horizontal separation, and already exceeds the combined 
measurement uncertainty when allowing separations up to 250km. Even the median of the 
differences is found to depend on the adopted co-location criterion, contradicting the often-made 
assumption that atmospheric variability “averages out” if sufficient co-locations are available.   It is 
clear that in this case the particular sampling characteristics of the measurement systems combined 
with structural atmospheric gradients lead to systematic errors in the comparisons that depend on 

the adopted co-location criterion.     

 

The advantage of this method is that it is entirely data-driven and does not rely on a quantified 
understanding of the underlying physics.  As such, it is applicable to species and atmospheric 
regimes for which little is known about the scales and amplitudes of spatio-temporal variability. It is 

Figure 21: Dependence of the spread (left-hand panel) and median (right-hand panel) of the differences between 
GOME-2/MetOp-A and AEMet Brewer total ozone column measurements at the Izana station (Tenerife Island). In the 

current context, only the black and magenta solid l ines are of interest. The other l ines correspond to an OSSE 
approach detailed further in Section 5.4. Reproduced from Verhoelst et al. (2015). 
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also fairly straightforward to implement and low on computation cost. The disadvantage is that it 
requires fairly large numbers of co-locations to be able to have reliable statistics even for tight co-

location criteria.  

5.2. Statistical modelling 
 

A more advanced data-driven analysis of a set of co-located measurements uses the Heteroskedastic 
Functional Regression Model (HFRM) to disentangle environmental (co-location mismatch) and 
measurement uncertainties. It was demonstrated by Fassò et al. (2014) on thermodynamic profiles 
obtained from radiosondes launched from two nearby GRUAN sites.  The basic idea is that the 
differences between co-located measurements are modelled using a locally linear function of 
measured covariates, and allowing for measurement and height-dependent  environmental 
uncertainties.  In this way, the model can differentiate between measurement uncertainty, reducible  

environmental uncertainty and irreducible environmental uncertainty, see  Figure 22. 

A clear added value of the modelling component  is the possibility to decompose the uncertainty 
budget and consequently to assess the accuracy of the measurement uncertainties provided with a 
data product.  Drawbacks of this approach are the necessity of meaningful covariate measurements, 
the limitation to uncertainties, rather than individual errors, and the coding effort required to 

implement the model fitting.  

 

Figure 22: Uncertainty budget decomposition of relative humidity comparisons between co-located 
radiosonde launches, as derived using the HFRM statistical approach. From Fassò et al. (2014). 

5.3. Parametrized physics 
 

Another potential approach combines a parametrization of natural variability and of measurement 
system properties.  For instance, with the aim of quantifying  the sampling uncertainty  σsample  of 
gridded monthly means of ozone profiles from the HARMonized  data  set  of  Ozone  profiles  
(HARMOZ), created  in  the  framework  of  the  ESA  Ozone_cci project, Sofieva et al. (2014) 
developed the following approach: First, the measurement inhomogeneity H is defined and 
computed as  a combination of the measurement asymmetry A and entropy E (see Sofieva et 

al.,2014, for the definition of these properties):  

H = ½(A + (1 – E)) 
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For the HARMOZ data set, the inhomogeneity in longitude  is negligible, and only the latitude and 
time dimension must be taken into account. Then, the natural variability is parametrized as a 
climatological variance σvar. Lastly, the coefficient α in the equation  σsample = (σvar . H)α is determined 
by fitting this relation to a more detailed determination of the sampling error  with an OSSE 
approach (cfr. the next section).  From Figure 23 it was concluded that α  is approximately equal to 

unity, and thus: 

σsample = σvar . H 

 

Figure 23: Relation between measurement inhomogeneity and sampling uncertainty normalized to the natural 

variability, for the HARMOZ ozone profile data set developed within Ozone_cci . The data points represent 
detailed estimates of the sampling uncertainty based on an OSSE approach, while the solid and dashed line 
represent a parametrized relation. From Sofieva et al. (2014). 

This sampling uncertainty should then be added to the formal uncertainty on the monthly ozone 

profile averages to yield the total uncertainty on the gridded monthly means: 

𝜎𝑡𝑜𝑡
2 = 𝜎𝑚𝑒𝑎𝑛

2 + 𝜎𝑠𝑎𝑚𝑝
2  

Such a parametrization allows for a fast estimate of sampling uncertainties of a large set of high -
level data. The downside is that in the current shape, the output of this approach is limited to 
uncertainties, i.e. the width of the error distribution, and does not allow an estimate of individual 

errors and of their mean (i.e. a systematic error).  

5.4. Physical modelling 
 

The most informative, but also the most elaborate, option is the Observing System Simulation 
Experiment. This concept can be applied here as follows: first, it consists in the creation of (multi-
dimensional) observation operators constrained by the metadata of the real observing systems, 
then, this is followed by the application of  those  observation  operators  onto  high-resolution  
atmospheric  fields, either from models or from gridded measurement data sets and campaigns.  
Provided  that  both the observation  operators and the fields  are  realistic,  this  method  allows  a  
simulation of each individual measurement, with or without smoothing properties taken into 
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account, and as such it allows a quantified estimate of the error terms due to smoothing and 
sampling differences, and of the combined mismatch errors.  This approach is followed for instance 
in Verhoelst et al. (2015), based on a suite of software tools named OSSSMOSE, and used to 
generate illustrations of smoothing and sampling issues throughout Sections 3 and 4 of this 
document.  The general setup of the OSSSMOSE system is shown in Figure 24 , but the reader is 

referred to Verhoelst et al. (2015) for more details.  

 

Figure 24: Architecture of the OSSSMOSE system for Observing System Simulation Experiments. See Verhoelst 
et al. (2015) for further details. 

The advantage of this approach is the possibility to estimate individual errors, and hence to analyze 
the entire error probability distribution function, rather than only its width (i.e. the uncertainty). On 
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the downside, it requires reliable auxiliary data (model or other high-resolution gridded data) and 
some computational effort.  This system was used for the case study reported on in Section 4.3, and 
an additional example is provided in Figure 25. Again, the large comparison spread and median, with 
very strong seasonal features, do not indicate data quality issues but can be traced back entirely to 

spatio-temporal mismatch errors.   

 

 

Figure 25: Median of (upper panel) and spread on (lower panel) the differences between GOME-2A and AEMet 

Brewer (daily mean) measurements of the total ozone column above the NDACC sub-tropical station of Izaña 
(Tenerife Island).  The black curves correspond to the actual measured differences for co-locations up to 
1000km and 12hours. The magenta line indicates the combined measurement uncertainty. The red and blue 

curves represent the OSSSMOSE simulated horizontal sampling and smoothing differences respectively. The 
green curves represent the total simulated differences, including also the errors due to measurement 
uncertainty and the impact of the mountain-top location of the Brewer, which doesn’t see the ozone column 
below 2600m. From Verhoelst et al. (2015).  
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6. Conclusion and prospects 
 

The metrology of an atmospheric measurement contains several aspects that are crucial when 

assuring the quality of the data and assessing their fitness-for-purpose with respect to user 

requirements, in particular those requirements expressed by the Copernicus Climate Change and 

Atmosphere Monitoring services(C3S and CAMS). Important aspects are (1) traceability of the data 

production, (2) uncertainty assessment, e.g., through propagation along the corresponding 

traceability diagrams, and  (3) full characterization of the spatiotemporal properties of the 

measurements in terms of sampling, smoothing, and sensitivity. Moreover, quality assurance of 

(satellite) data sets involves comparison with ground-based reference measurements in order to 

obtain an independent indicator of the quality of the data and their uncertainties. These 

comparisons are affected by additional errors and uncertainties due to spatiotemporal co-location 

mismatch: different instruments and measurement methods have di fferent sampling and smoothing 

properties, in the horizontal, vertical, and temporal domain. As the  atmosphere is variable and 

inhomogeneous on a variety of scales, these differences can impact significantly the comparison  

results, depending on the co-location criteria and harmonization methods that were used to 

minimize or limit spatiotemporal mismatch.  Consequently, proper interpretation of the comparison 

results requires a corresponding effort to characterize the metrology of the data comparisons.   

The current document has provided a general introduction to both the metrology of a single 

measurement of an atmospheric variable, and that of a comparison.  Generic concepts were 

formulated and illustrated with specific examples from data sets and comparisons playing an 

important role in GAIA-CLIM and related projects.  This includes, among others, traceability 

diagrams, uncertainty propagation methods, co-location criteria, horizontal smoothing properties, 

and the decomposition of the error budget of a specific comparison exercise in terms of 

measurement and co-location mismatch errors.  

Several future deliverables from GAIA-CLIM’s WP3 will build upon the concepts and examples 

provided in the current document:  

 D3.4, a technical note reporting in detail on several measurement mismatch studies and 

their impact on data comparisons, i.e. work performed in Task 3.2 

 D3.6, a library of smoothing and sampling error estimates for key atmospheric composition 

measurement systems (i.e. results from Task 3.1), and for key data comparisons (results 

from Task 3.2). 

 D3.5 and D3.7, tools for the quantification of co-location mismatch and smoothing 

uncertainties to be integrated into the Virtual Observatory developed in WP5.  

This document is to be advertised  in related projects (e.g., QA4ECV, FIDUCEO and CCI)  and to the 

larger community dealing with atmospheric measurements and their intercomparisons,  with the 

aim of raising awareness of the importance of a careful assessment of the measurement and of 

metrological aspects of a data comparison, and to spread knowledge on methods that allow 

mitigation and quantification of spatiotemporal smoothing and sampling errors.  
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Annex A: QA4ECV terms and definitions 
 

TERM DEFINITION SOURCE 

accuracy 

closeness of agreement between a measured quantity 

value and a true quantity value of a measurand; note that 

it is not a quantity and it is not given a numerical quantity 

value 

VIM/ISO:99, 

GUM 

area (volume) of 

representativeness 

the area (volume) in which the concentration does not 

differ from the concentration at the station by more than 

a specific range 

Larssen 

bias 

(1) systematic error of indication of a measuring system 

(2) estimate of a systematic measurement error 

(3) estimate of a systematic forecast error 

(1) VIM/ISO:99 

(2) VIM/ISO:99 

(3) MACC 

calibration 

(1) the process of quantitatively defining the system 

responses to known, controlled signal inputs 

(2) operation that, under specified conditions, in a first 

step, establishes a relation between the quantity values 

with measurement uncertainties provided by 

measurement standards and corresponding indications 

with associated measurement uncertainties and, in a 

second step, uses this information to establish a relation 

for obtaining a  measurement result from an indication 

(1) 

CEOS/ISO:19159 

(2) VIM/ISO:99 

dead 

band               (or 

neutral zone) 

maximum interval through which a value of a quantity 

being measured can be changed in both directions 

without producing a detectable change in the 

corresponding indication 

VIM/ISO:99 

detection limit 

measured quantity value, obtained by a given 

measurement procedure, for which the probability of 

falsely claiming the absence of a component is β, given a 

probability α of falsely claiming its presence 

VIM/ISO:99 

error 

(1) measured quantity value minus a reference quantity 

value 

(2) difference of quantity value obtained by 

measurement and true value of the measurand 

(3) difference of forecast value and a, estimate of the 

true value 

(1) VIM/ISO:99 

(2) 

CEOS/ISO:19159 

(3) MACC 

establish define, document and implement CDRH 
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instantaneous 

field of view (IFOV) 
opening angle corresponding to one detector element  ISO:19130 

fiducial 
used as a fixed standard of reference for comparison or 

measurement (fiducial point) 
WordNet 

fiducial marker 

refers to an object placed in the field of view of an 

imaging system which appears in the image produced, for 

use as a point of reference or a measure 

 

field-of-regard 
an area of the object space scanned by the field-of-view 

of a scanning sensor  
NIST 

field-of-view the solid angle from which the detector receives radiation  NIST 

footprint 
the area of a target encircled by the field-of-view of a 

detector of radiation, or irradiated by an active system 
NIST 

geometrical 

resolution 

ability of a sensor system to record signals separately 

from neighboring object structures 

DIN 18716-3: 

1997-07 

ground sampling 

distance (GSD) 
linear distance between pixel centres on the ground  CEOS/ISO:19159 

influence quantity 

quantity that, in a direct measurement, does not affect 

the quantity that is actually measured, but affects the 

relation between the indication and the measurement 

result 

VIM/ISO:99 

in situ 

measurement 

(1) a direct measurement of the measurand in its original 

place 

(2) any sub-orbital measurement of the measurand 

(1) 

CEOS/ISO:19159 

(2) GEOSS 

measurand quantity intended to be measured VIM/ISO:99 

metadata 
data about the data; parameters that describe, 

characterise, and/or index the data 
WMO 

monitoring 

(1) systematic evaluation over time of some quantity 

(2) by extension, evaluation over time of the performance 

of a system, of the occurrence of an event etc. 

(1) NIST 

(2) MACC 

point-to-area 

(point-to-volume) 

representativeness 

the probability that a point measurement lies within a 

specific range of area-average (volume-average) 

concentration value 

Nappo 

positional 

accuracy 

closeness of coordinate value to the true or accepted 

value in a specified reference system  
ISO:19116 
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precision 

(1) measure of the repeatability of a set of 

measurements. Note that precision is usually expressed 

as a statistical value based upon a set of repeated 

measurements such as the standard deviation from the 

sample mean 

(2) closeness of agreement between indications or 

measured quantity values obtained by replicate 

measurements on the same or similar objects under 

specified conditions 

(1) ISO:19116 

(2) VIM/ISO:99 

procedure specified way to carry out an activity or a process ISO:9000 

process 
set of interrelated or interacting activities that use inputs 

to deliver an intended result 
ISO:9000 

process validation 

establishing documented evidence of a high degree of 

assurance that a specific process will consistently 

produce a product meeting its pre-determined 

specifications and quality characteristics 

CDRH 

quality 
degree to which a set of inherent characteristics of an 

object fulfils requirements 
ISO:9000 

quality assurance 
part of quality management focused on providing 

confidence that quality requirements will be fulfilled 

CEOS/ISO:19159, 

ISO:9000 

quality assessment 

term referring to the derivation of quality indicators 

providing sufficient information to assess whether quality 

requirements are fulfilled 

CEOS 

quality control 

(QC) 

(1) QC refers to the activities undertaken to check and 

optimise accuracy and precision of the data after its 

collection 

(2) part of quality management focused on fulfilling 

quality requirements 

(1) 

CEOS/ISO:19159 

(2) ISO:9000 

quality indicator 

(QI) 

a means of providing a user of data or derived product 

with sufficient information to assess its suitability for a 

particular application. This information should be based 

on a quantitative assessment of its traceability to an 

agreed reference or measurement standard (ideally SI), 

but can be presented as a numeric or a text descriptor, 

provided the quantitative linkage is defined. 

QA4EO 

radiometric 

calibration 

a determination of radiometric instrument performance 

in the spatial, spectral, and temporal domains in a series 

of measurements, in which its output is related to the 

true value of the measured radiometric quantity 

NIST 
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random error 

(1) component of measurement error that in replicate 

measurements varies in an unpredictable manner; note 

that random measurement error equals measurement 

error minus systematic measurement error 

(2) component of forecast error that varies in an 

unpredictable manner 

(1) VIM/ISO:99 

(2) MACC 

relative standard 

uncertainty 

standard measurement uncertainty divided by the 

absolute value of the measured quantity value 
VIM/ISO:99 

repeatability 

measurement precision under set of conditions including 

the same measurement procedure, same operator, same 

measuring system, same operating conditions and same 

location, and replicated measurements over a short 

period of time 

VIM/ISO:99 

representativeness 

the extent to which a set of measurements taken in a 

given space-time domain reflect the actual conditions in 

the same or different space-time domain taken on a scale 

appropriate for a specific application 

Nappo 

reproducibility 

measurement precision under a set of conditions 

including different locations, operators, and measuring 

systems 

VIM/ISO:99 

resolution 

(1) smallest change in a quantity being measured that 

causes a perceptible change in the corresponding 

indication 

(2) the least angular/linear/temporal/spectral distance 

between two identical point sources of radiation that can 

be distinguished according to a given criterion 

(3) the least vertical/geographical/temporal distance 

between two identical atmospheric features that can be 

distinguished in a gridded numerical product or in time 

series of measurements; resolution is equal to or coarser 

than vertical/geographical/temporal sampling of the grid 

or the measurement time series 

(1) VIM/ISO:99 

(2) NIST 

(3) MACC 

stability 
Property of a measuring instrument, whereby its 

metrological properties remain constant in time 
VIM/ISO:99 

systematic error 

component of measurement error that in replicate 

measurements remains constant or varies in a 

predictable manner 

VIM/ISO:99 

system set of interrelated or interacting elements ISO:9000 
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traceability 

(1) (metrological traceability) property of a measurement 

result relating the result to a stated metrological 

reference (free definition and not necessarily SI) through 

an unbroken chain of calibrations of a measuring system 

or comparisons, each contributing to the stated 

measurement uncertainty 

(2) ability to trace the history, application or location of 

an object, a product or a service 

(1) VIM/ISO:99 

(2) ISO:9000 

traceability chain 
sequence of measurement standards and calibrations 

that is used to relate a measurement result to a reference 
VIM/ISO:99 

uncertainty 

non-negative parameter characterizing the dispersion of 

the quantity values being attributed to a measurand, 

based on the information used 

VIM/ISO:99 

validation 

(1) the process of assessing, by independent means, the 

quality of the data products derived from the system 

outputs 

(2) verification, where the specified requirements are 

adequate for an intended use 

(3) confirmation, through the provision of objective 

evidence, that the requirements for a specific intended 

use or application have been fulfilled 

(4) the process of assessing, by independent means, the 

degree of correspondence between the value of the 

radiometric quantity derived from the output signal of a 

calibrated radiometric device and the actual value of this 

quantity. 

(5) confirmation by examination and provision 

of  objective evidence that specifications conform to user 

needs and intended uses, and that the particular 

requirements implemented through software can be 

consistently fulfilled 

(1) 

CEOS/ISO:19159 

(2) VIM/ISO:99 

(3) ISO:9000 

(4) NIST 

(5) CDRH 
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verification 

(1) provision of objective evidence that a given item fulfils 

specified requirements; note that, when applicable, 

measurement uncertainty should be taken into 

consideration. 

(2) confirmation, through the provision of objective 

evidence, that specified requirements have been fulfilled 

(3) the provision of objective evidence that the design 

outputs of a particular phase of the software 

development life cycle meet all of the specified 

requirements for that phase 

(1) VIM/ISO:99 

(2) ISO:9000 

(3) CDRH 

vicarious 

calibration 

post-launch calibration of sensors that make use of 

natural or artificial sites on the surface of the Earth 
CEOS/ISO:19159 
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