

Universida_{de}Vigo

Juan A. Añel

6 October 2015 GAIA-Clim User Workshop

Gap types from the GAID

spatio-temporal coverage
vertical resolution
uncertainty budget and calibration
uncertainty in relation to comparator measures
missing parameters/auxiliary information
pure technical issues
governance

Gap types from the GAID

spatio-temporal coverage

vertical resolution

uncertainty budget and calibration

uncertainty in relation to comparator measures

missing parameters/auxiliary information

pure technical issues

governance

Vertical resolution

- It is a transition layer
- Representation of exchange processes is a huge problem (AOGCMs, Lagrangian transport models,...)
- Strong gradients
- Fingerprint of climate change (vertical movement, extension of the tropical belt,...)
- Important for wave propagation (QBO, SSW's, Polar Vortex, seasonal predictability,...)
- Age of Air, B-D cirulation

ECVs

- H₂O
- *O*₃
- *CO*₂
- CH₄

of course other basic ones: T, P,...

Examples:

- PREMIER Validation vs CMAM
 - stratosphere-troposphere exchange
 - tropical
 - the Indian monsoon
 - o pyroconvection
 - long-range transport of air pollution
 - o mesoscale dynamics including gravity waves
- 16 instruments vs. WACCM O_3 and H_2O [Toohey et al. (2013) Characterizing sampling biases in the trace gas climatologies of the SPARC Data Initiative. J. Geophys. Res.]
 - \circ O_3 monthly mean errors up to 10 % and annual means up to 20 %
 - ∘ *H*₂*O* smaller errors

Addressing these gaps

Radiosondes-GRUAN Measurement campaings in critical regions for critical events: Aircrafts + radiosondes + lidars (using EUFAR infrastructure?)

