
GAIA-CLIM	deliverable	D5.4	
	

1	
	

	

GAIA-CLIM	deliverable	D5.4	

Gap	 Analysis	 for	 Integrated	 Atmospheric	 ECV	 CLImate	
Monitoring	

	

WP5:	Creation	of	a	“virtual	observatory”	visualization	and	data	
access	facility	

	

D5.4:	“Graphical	User	Interface”.	

	

	

	

	

	

	

	

A	Horizon	2020	project;	

	Grant	agreement:	640276	

Date:	11	September	2017	

Lead	Beneficiary:	TUT	

Nature:	Other	

Dissemination	level:	PU	

	

	

	

	

GAIA-CLIM	deliverable	D5.4	
	

2	
	

	

	

	

	

Work-package	 WP5	(Creation	of	a	“virtual	observatory”	visualization	and	data	
access	facility)	

Deliverable	 D5.4	

Nature	 Other	

Dissemination	 PU	

Lead	Beneficiary	 TUT	

Date	 11/09/2017	

Status	 Final	

Authors	 Kalev	Rannat	(TUT),	Arndt	Meier	(EUMETSAT),	Hannes	Keernik	(TUT),	
Merik	Meriste	 (TUT),	 Neeme	 Loorits	 (TUT),	 Tonis	 Kelder	 (TUT),	 Jüri	
Helekivi	(TUT)	

Editors	 	

Reviewers	 Peter	Thorne	(NUIM),	Anna	Mikalsen	(NERSC)		

Contacts	 kalev.rannat@gmail.com	,	Arndt.Meier@eumetsat.int	

URL	 http://www.gaia-clim.eu		

	

This	 document	has	 been	produced	 in	 the	 context	 of	 the	GAIA-CLIM	project.	 The	 research	 leading	 to	
these	results	has	received	funding	from	the	European	Union's	Horizon	2020	Programme	under	grant	
agreement	 n°	 640276.	 All	 information	 in	 this	 document	 is	 provided	 "as	 is"	 and	 no	 guarantee	 or	
warranty	 is	 given	 that	 the	 information	 is	 fit	 for	 any	 particular	 purpose.	 The	 user	 thereof	 uses	 the	
information	at	its	sole	risk	and	liability.	For	the	avoidance	of	all	doubts,	the	European	Commission	has	
no	liability	in	respect	of	this	document,	which	is	merely	representing	the	authors’	view	

	

	

GAIA-CLIM	deliverable	D5.4	
	

3	
	

	

	

	

Version	 Author(s)	/Reviewers	 Date	 Changes	

0.1	 Kalev	Rannat,	Arndt	Meier	 2017-09-04	 	1st	draft	

0.2	

Kalev	Rannat,	Arndt	Meier,	
Hannes	Keernik,	Merik	Meriste,	
Neeme	Loorits,	Tonis	Kelder,	Jüri	
Helekivi	

2017-09-08	 2nd	draft	

0.3	

Kalev	Rannat,	Arndt	Meier,	
Hannes	Keernik,	Merik	Meriste,	
Neeme	Loorits,	Tonis	Kelder,	Jüri	
Helekivi	

2017-09-10	 3rd	draft.	Slight	restructuring	and	
updates	in	sections	3.1	and	3.2.	

1.0	 Peter	Thorne,	Anna	Christina	
Mikalsen	 2017-09-12	 Slight	restructuring	and	editorial	

corrections	

	 	

	

	

	

	

	

	

	 	

GAIA-CLIM	deliverable	D5.4	
	

4	
	

Table	of	Contents	
[1]	 Introduction	..	5	

[2]	 Outline	of	this	deliverable	...	6	

[3]	 Virtual	Observatory	(VO)	and	Graphical	User	Interface	(GUI)	–	general	aspects
	 6	

[3.1]	Architecture	..	7	

[3.2]	Data	and	data	flow	..	10	
[3.2.1]	Correction	of	drift	in	radiosonde	data	...	13	
[3.2.2]	Collocation	implementation	by	lookup	tables	method	..	14	

[3.3]	Data,	metadata	and	Data	Ingestion	Script	(DIS)	...	15	

[3.4]	GUI	(functional	overview)	...	16	

[4]	 Summary	and	recommendations	..	24	

Glossary	..	25	

APPENDIX	A:	The	Virtual	Observatory	and	Tutorials	on	the	internet	26	

APPENDIX	B:	Data	Ingestion	Scripts	...	27	
	

	

	

	

	

	 	

GAIA-CLIM	deliverable	D5.4	
	

5	
	

[1] Introduction		
	

The	objectives	of	this	work	package	are:	
● Creation	of	a	collocation	database	for	satellite	and	reference	measurements	including	

NWP	model-based	(re)analyses.	
● Creation	of	data	interrogation	and	visualization	tools	building	upon	existing	European	

and	global	infrastructure	capabilities.	
● Evaluation	 of	 the	 resulting	 Virtual	 Observatory	 to	 demonstrate	 its	 utility	 for	

scientific/statistical	 analysis	 of	 respective	 observations,	 performance	 characteristics	
and	the	monitoring	of	instrument	and	product	behaviour	over	time.	

● Provision	of	a	transition	roadmap	for	the	Virtual	Observatory	(including	outputs	from	
WP1	 through	WP4)	 from	 research	 to	 operational	 status	 enabling	 operational	 use	 in	
Copernicus	services.	
	

Hence,	the	main	deliverable	of	WP5	 is	the	Virtual	Observatory	(VO)	facility	which	will	enable	
users	 to	 carry	 out	 comparisons	 of	 satellite	 data	 products	 to	 non-satellite	 reference-quality	
data.	 A	 range	 of	 visualisation	 and	 analysis	 tools	 have	 been	 developed	 to	 enable	 users	 to	
explore,	analyse,	and	 interact	with	 the	data	provided	within	 the	VO	and	these	are	described	
herein.		

Substantial	contributions	to	the	VO	development	have	been	received	from	many	GAIA-CLIM	
partners	in	the	form	of	discussion	and	support,	software,	and	actual	GAIA-CLIM	deliverables.	
Noteworthy	contributions	from	underlying	work	packages	are:	

• The	metadata	database	and	the	CESIUM	visualisation	tool	(WP1	lead	by	CNR),	

• Collocation	engine	(EUMETSAT),		

• Error	traceability	diagrams,	measurement	system	questionnaires,	and	reference	
product	readiness	(WP2	lead	by	BKS),		

• Look-up	tables	for	collocation	mismatch	and	smoothing	errors	derived	with	OSSSMOSE	
(WP3	lead	BIRA-IASB),	and		

• The	GRUAN	processor	(WP4	lead	by	UK	MetOffice).	
	

The	Graphical	User	Interface	(GUI)	for	the	Virtual	Observatory,	as	a	main	output	of	WP5	Task	
5.2	 is	 built	 to	 showcase	 potential	methods	 and	 scientific	 advances	 from	 all	 underlying	work	
packages	(WPs).	The	implementation	supported	within	the	GAIA-CLIM	project	remit	shall	only	
serve	as	a	proof-of-concept	for	an	operational	VO	facility.	

	

	 	

GAIA-CLIM	deliverable	D5.4	
	

6	
	

[2] Outline	of	this	deliverable	
	

The	Virtual	Observatory	with	its	GUI	and	data	access	facility	can	be	considered	as	a	functional	
piece	of	software	with	an	underlying	database	accessible	through	the	internet.		

Some	 aspects	 of	 the	 VO	 are	 already	 described	 in	 earlier	 deliverables	 of	 the	 project.	
Particularly,	the	technological	platform	for	the	collocation	database	and	the	basic	architecture	
in	 D5.3	 and	 data	 ingestion	 to	 the	 database	 and	 the	 tools/methods	 for	 the	 quantification	 of	
collocation	mismatch	and	smoothing	uncertainties	in	D3.5.		

The	present	document	 is	 a	 short	overview	on	 the	VO	and	 its	GUI	 focussing	on	 the	 technical	
implementation.	 Deliverable	 5.5	 will	 provide	 a	 more	 detailed	 description	 of	 the	 tools	 and	
software	provided	by	the	VO	from	a	user	perspective	(user	guide).	

Video	 tutorials	 (delivered	 in	 D5.5)	 have	 been	 created	 to	 illustrate	 in	 detail	 the	 present	
functionality	of	the	VO	and	should	help	to	reproduce	the	examples	shown.	

The	 GUI	 layout	 and	 its	 functionalities	 have	 been	 advanced	 compared	 to	 the	 first	 prototype	
version	 presented	 at	 the	 GAIA-CLIM	 2nd	 user	 workshop	 in	 Nov	 2016	 and	 at	 the	 GAIA-CLIM	
General	Assembly	 in	Feb	2017.	 Improvements	have	been	made	 in	accordance	with	 feedback	
from	both	pilot	users	and	 inhouse	testing,	as	well	as	 for	software-technical	reasons.	 	For	the	
end-user	one	of	the	most	noticeable	changes	is	the	3D-tool	delivered	by	CNR	under	WP1	that	
visualises	the	metadata.	It	is	highly	interactive	and	comes	with	an	appealing	modern	graphics	
engine.	 The	 other	 notable	 change	 is	 the	 new	 plotting	 engine	 for	 the	 collocation	 data.	 The	
decision	has	been	made	not	 to	deliver	 satellite	 imagery	 –	accordingly,	 this	 feature	has	been	
removed	from	the	VO.	

The	new	development	framework	and	the	Plotly	graphical	data	plotting	engine	give	this	new	
VO	GUI	a	much	more	professional	outlook	and	follow	clearly	defined	software	standards.	As	a	
result,	the	GUI	is	not	only	more	robust	but	also	a	lot	sleeker	and	easier	to	maintain.	

The	URLs	of	a	live	demo	of	the	VO	and	the	video	tutorials	are	listed	in	Appendix	A.	

	

[3] Virtual	Observatory	(VO)	and	Graphical	User	Interface	
(GUI)	–	general	aspects	

	

The	design	and	implementation	of	the	VO	and	its	GUI	is	based	on	the	rationale	and	the	scope	
of	usage	of	the	VO.		

Virtual	Observatory	Rationale:	
• Enhance	exploitation	and	visualisation	of	ground-based	reference	data	for	satellite	

product	validation;	

GAIA-CLIM	deliverable	D5.4	
	

7	
	

• Integrate	ground-based	reference	data	with	existing	satellite-satellite	comparisons	and	
observation	feedback	from	NWP	models	and	reanalysis;				

• Allow	users	to	interrogate	multiple	data	sources	in	a	seamless	way,	and	permit	remote	
data	analysis;	

• Increase	awareness	among	users	of	satellite	and	non-satellite	data,	and	on	the	concept	
of	traceable	uncertainty	estimates;	

• Provide	a	facility	to	support	Copernicus	Services	to	analyse	product	quality	in	a	
sustainable	routine	mode.	

	
Envisioned	Usage	of	the	VO:	

• Quality	assessment	of	satellite		
• raw	data	(Level	1	data),	and		
• retrieved	products	(Level	2	data),		
• both	global	and	regional;	

• Quality	assessment	of	NWP	model-based	forecast/analysis	and	reanalysis	data;	
• Assessment	of	long-term	stability	of	satellite	data	records;	
• Quality	assessment	of	other	non-satellite	measurements;	
• Model	evaluation	(all	aspects	including	processes);	
• Climate	analysis	(variability,	trend	detection,	etc.).	

	

A	particular	challenge	has	been	that	the	tools	and	approaches	to	be	integrated	have	evolved	
gradually	 in	 accordance	 with	 the	 progress	 made	 in	 other	 WPs	 with	 development	 and	
implementation	occurring	almost	in	parallel.	Further	development	shall	occur	over	the	coming	
months	and	be	informed	by	feedback	from	the	dedicated	outreach	activities	that	now	replace	
the	third	user	workshop.		

Though	 the	 current	 implemantation	 of	 the	 VO	 and	 GUI	 serves	 as	 a	 proof-of-concept	
demonstrator,	 it	 is	designed	 to	be	easily	 expandable	by	adding	new	 features	and	data.	 	 The	
GUI	 follows	principles	of	 responsive	design	and	 is	 implemented	 in	 the	progressive	 JavaScript	
framework	 VUE	 (https://vuejs.org/).	 Data	 visualization	 is	 based	 on tOpen	 Source	 JavaScript	
graphics	library	plotly.js.	(https://plot.ly/javascript/).		

	

[3.1]	Architecture	
	

Based	on	the	rationale	and	possible	usage	of	the	VO,	the	application/implementation	needs	to	
handle	diverse	and	massive	input	data	originating	from	three	main	sources	of	data:	

• ground-based	observational	networks	(in-situ	or	remotely	sensed	+	uncertainties),		
• satellite-borne	instruments	(satellite	L1	radiances,	L2	retrievals	+	uncertainties),	
• NWP	simulations	and	reanalysis	with	uncertainties.		

The	architecture	of	the	VO	is	chosen	as	characteristic	for	a	client-server	application.	It	consists	
of	two	main	parts	–	the	client	and	the	server	with	a	database	(Figure	3.1).	

GAIA-CLIM	deliverable	D5.4	
	

8	
	

	
Figure	 3.1	 represents	 the	 architecture	 of	 the	 VO,	 consisting	 of	 a	 front	 end	 (client)	 and	 the	 back	 end	
(server).	
	

The	 main	 data-handling	 paradigm	 in	 the	 VO	 is	 “searching	 data	 by	 its	 metadata”.	 With	
metadata	we	mean	data	about	what	type	of	observations	have	been	made	at	what	location	by	
what	 kind	 of	 instrument	 and	 network	 over	what	 periods	 of	 time.	 	 For	 this	 purpose,	 the	 VO	
offers	an	 integrated	metadata	search-	and	visualization	tool	developed	by	CNR.	The	user	can	
easily	 search	 through	 the	 sites	 and	 networks	 offering	 data	 for	 several	 ECVs	 of	 interest.	
Additionally,	 the	 user	 can	 find	 information	 about	 data	 availability	 for	 user-defined	 times	 of	
interest,	the	location	of	the	measurements,	data	and	network	quality	(in	form	of	the	network	
maturity	matrix	described	in	D1.3	“Report	on	system	of	systems	adopted	and	rationale”),	etc.	
These	 features	 are	 supported	 by	 a	metadata	 visualization	 tool	 (with	 its	 description	 given	 in	
D5.5).	 This	 can	 be	 helpful	 in	 collecting	 first-step	 information	 for	 further	 data	mining	 or	 for	
sending	a	specific	data	request	(“Data	selection”	in	the	VO	main	menu).		

The	 metadata	 is	 collected	 and	 stored	 by	 CNR	 under	 WP1.	 The	 VO	 shares	 and	 uses	 this	
metadata	as	it	has	been	ingested	into	the	same	MongoDB.	However,	the	original	metadata	is	
kept	on	CNR	premises	 in	a	 supplementary	database	 in	case	original	data	 records	need	 to	be	
restored.	Due	to	different	data	formats	originating	from	different	data	providers,	the	VO	uses	
tools	 for	data	harmonization.	The	necessary	data	harmonisation	 is	 taken	care	of	by	 the	data	
Ingestion	Script(s)	developed	at	TUT.		As	a	result,	the	VO	stores	data	internally	in	a	unified	data	
and	metadata	format.		

The	total	data	volume	is	expected	to	grow	rapidly,	because	thus	far	we	have	been	focusing	on	
ingesting	 reasonably	 large	 samples	 of	 different	 types	 of	 data	 and	 to	 get	 the	 data	 handling	

GAIA-CLIM	deliverable	D5.4	
	

9	
	

routines	 into	 place	 and	 tested.	 Processing	 and	 ingesting	 data	 of	 the	 same	 type	 but	 from	
different	 locations	 or	 years	 is	 mostly	 trivial.	 Consequently,	 it	 is	 expected	 that	 substantial	
additional	 data	 volumes	 shall	 be	 ingested	 over	 the	 next	 6	 months.	 Further,	 even	 more	
observations	 will	 be	 added	 as	 progressively	 more	 satellites	 commence	 their	 observation	
programmes	(for	example	enhancing	the	Sentinel	program)	and	adding	data	for	different	ECVs	
were	 the	 VO	 to	 become	 operational.	 Potentially,	 one	 could	 consider	 these	 operations	 with	
observational	data	collections	as	Big	Data,	and	one	clearly	needs	to	continuously	 look	after	a	
growing	database.	 The	expectation	of	progressively	 adding	more	and	different	 kinds	of	data	
with	 specifications	 that	are	not	 fully	known	 in	advance	have	been	 the	main	consideration	 in	
the	 decision	 on	 a	modern	 object-oriented	 non-relational	 open	 source	 database	 --	MongoDB	
(mongodb.org)	over	traditional,	relational	databases.		

Unlike	 for	MySQL,	 PostgreSQL	 or	 OracleDB,	 the	 object	 oriented	 approach	 does	 not	 require	
defining	the	layout	of	the	database	completely	in	advance.	The	layout	and	data	structure	can	
be	modified	as	needed	 in	 an	extendable	 and	 seamless	manner	without	 the	need	 to	 convert	
existing	 records	 to	 the	 new	 format	 each	 time.	 We	 anticipate	 that	 different	 future	
observational	data	will	have	slightly	different	needs,	and	hence	 these	anticipated	changes	 in	
data	structures	will	not	cause	problems.	 In	addition,	from	the	application	development	point	
of	 view,	MongoDB	 is	 a	mature	 product	with	 the	 biggest	 user	 base	 (68	million)	 amongst	 the	
non-SQL	 type	 databases;	 it	 does	 not	 entail	 any	 licensing	 costs,	 is	 scalable,	 and	 works	
seamlessly	across	all	major	operating	systems.	

The	VO	client	(Figure	3.1)	provides	access	to	the	GUI	(running	on	a	dedicated	server)	for	direct	
interaction	with	 the	 user.	 	 The	 GUI	 offers	 tools	 for	 data	 selection,	 data	mining,	 processing,	
visualization,	basic	statistical	analysis	and	export	of	the	data	(either	original	observational	data	
or	graphical	images).	The	GUI	offers	users	also	the	means	to	communicate	with	the	database	
and	with	the	server	via	HTTP-requests.		

The	server	(VO-server)	is	a	body	of	software	for	receiving	and	interpreting	the	HTTP-requests	
sent	 by	 the	 client	 and	 sending	 HTTP-responses	 that	 match	 the	 requests.	 For	 example,	 the	
response	may	contain	certain	observational	data	from	the	database	as	requested	by	the	user,	
sent	 in	 JavaScript	Object	Notation	 (JSON)	 format.	 The	 client	 and	 the	 server	 “talk	 JSON”.	 	 To	
illustrate	 this	 in	an	example:	To	search	 for	 the	available	products	 from	a	GRUAN	radiosonde	
that	has	been	processed	with	the	radiative	transfer	model	RTTOV	(“GRUAN-processor”/WP4)	
producing	brightness	temperature	values	that	match	the	spectral	characteristics	of	a	selected	
satellite	instrument,	the	request	would	be:		
	
http://metadata_cci_cf/distinct/measurand_variable_list?programme_network_affiliation_na
me=GRUAN&measurement_observing_method=processor	
	
and	the	server	responds	with:	
	
[
		"Additional	quality	control	information",	
		"Air	pressure",	
		"Air	temperature",	

GAIA-CLIM	deliverable	D5.4	
	

10	
	

		"Air	temperature	at	2m",	
		"Brightness	temperature",	
		"Correlated	uncertainty	of	air	temperature",	
		"Correlated	uncertainty	of	relative	humidity",	
		"Land-sea	mask",	
			
]	
	
The	user	can	also	send	more	complicated	requests,	for	example,	requesting	the	calculation	of	
some	 statistics	 over	 the	 chosen	 datasets.	 All	 intensive	 computations	 are	 performed	 at	 the	
server	side	by	using	either	standard	math	libraries	or	other	dedicated	tools	installed	on	the	VO	
server.		

Other	examples	of	server-side	software	are	the	collocation	software	STAMP	(Space	Time	Angle	
Matchup	Procedure,	developed	at	EUMETSAT)	and	the	radiative-transfer	model	for	radiosonde	
soundings,	the	GRUAN	Processor	(UK	MetOffice).	However,	these	latter	tools	can	also	be	run	
on	Linux	workstations	at	original	data	centres	prior	to	data	 ingestion,	which	 is	almost	always	
preferable	because	of	the	huge	data	amounts	given	by	satellite	observation	products	(needed	
by	 STAMP)	or	NWP	 simulation	data	 (needed	by	 the	GRUAN	processor).	 The	 amount	of	 data	
produced	from	successful	collocations	 is	tiny	by	comparison	and	easily	transferred	to	the	VO	
database	server	where	the	actual	ingestion	is	carried	out.	

The	main	task	for	the	server	software	(VO-server)	 is	to	respond	to	the	client’s	HTTP-requests	
and	to	perform	all	and	often	heavy	operations	with	the	database.		

The	 interaction	of	the	user	with	the	GUI	drives	the	VO	data	flow	(including	filtering	and	data	
processing)	and	visualises	 (and/or	exports)	 the	 results	 to	 the	user’s	 computing	environment.	
The	 GUI	 is	 designed	 to	 be	 platform-independent	 and	 should	 work	 with	 all	 common	 web-
browsers.	 Mozilla	 and	 Chrome	 have	 already	 been	 successfully	 tested.	 Other	 browsers,	
including	Internet	Explorer	and	Safari,	will	follow.		

	

[3.2]	Data	and	data	flow	
	

Data	 for	 the	 VO	 comes	 from	 numerous	 observational	 networks,	 particularly	 from	 reference	
networks	 like	GRUAN	or	NDACC.	Metadata	 is	 collected	by	CNR.	 The	 three	most	widely	used	
data	 formats	 amongst	 network	 operators	 are	 ISO-19115-3,	 CCI-CF	 and	 WIGOS.	 These	
standards	 distinguish	 themselves	 through	 using	 completely	 different	 nomenclatures	 and	
internal	structures,	which	makes	them	inherently	difficult	to	harmonise.	The	original	metadata	
is	visualized	by	CNR’s	3D	tool	 (VO	metadata	view).	Data	formats	must	be	harmonized	before	
they	can	be	used	in	the	VO.	Though	the	Data	Ingestion	Script	(DIS)	has	a	capability	to	handle	all	
these	metadata	formats,	the	metedata	format	used	by	the	VO	internally	is	compiled	from	the	
observational	 data	 where	 observational	 data	 has	 been	 ingested.	 This	 avoids	 any	 potential	
duplicates.	How	this	is	done	in	detail	with	the	help	of	the	DIS	is	described	in	Appendix	B.	After	

GAIA-CLIM	deliverable	D5.4	
	

11	
	

harmonization,	 the	 records	 of	 data	 and	 metadata	 in	 unified	 format	 are	 ingested	 into	 the	
MongoDB.		

The	 database	 is	 built	 so	 that	 it	 is	 possible	 to	 extract	metadata	 and	 also	 observational	 data	
(either	 collocated	 or	 non-collocated)	 in	 its	 original	 netCDF	 format.	 In	 the	 case	 of	 collocated	
data,	 the	 STAMP	 tool	 takes	 care	of	 reading	 all	 kinds	of	 different	 input	 data	 formats	 such	 as	
hdf4,	hdf5,	netCDF,	IASI	native,	BUFR,	etc.	and	writes	its	output	in	a	standardised	netCDF	data	
format.	 The	metadata	 the	 user	 can	 investigate	 and	 look	 at	with	 the	Metadata	 Visualization	
Tool	is	stored	on	CNR	premises	and	cannot	be	extracted	from	there	at	this	stage.	A	potential	
data	 export	 feature	 is	 in	 the	 hands	 of	WP1	 to	 decide	 and	 implement.	 However,	 if	 the	 user	
wanted	 to	 export	metadata,	 the	 same	 data	 could	 also	 be	 reached	 via	 the	 VO	MongoDB	 (a	
decision	whether	to	implement	this	feature	has	not	been	implemented	yet).	There	is	no	direct	
data	flow	between	the	VO	and	the	Metadata	DB	at	CNR.	As	far	as	the	ingestion	via	the	DIS	is	
concerned,	the	Metadata	DB	works	off-line.		

The	DIS	can	be	used	for	single	data	sets	and	also	for	collocated	datasets.	When	talking	about	
collocated	 data	 in	 the	 VO,	 we	 are	 referring	 to	 pre-collocated	 data	 with	 a	 maximum	 time	
difference	of	6	hours	and	a	maximum	distance	of	500	km.	Collocations	for	the	VO	are	created	
with	the	collocation	engine	STAMP	(EUMETSAT).	Collocation	mismatch	and	smoothing	errors	
are	 calculated	using	 Lookup	 tables	 (LUTs)	 (see	detailed	description	 in	D3.5).	As	 illustrated	 in	
Figure	3.2,	the	DIS	prepares	both	types	of	datasets	A	and	B	with	metadata	C	and	then	ingests	
them	into	the	MongoDB.		

The	 VO	 GUI	 gives	 users	 the	 possibility	 to	 refine	 the	 collocation	 criteria	 during	 the	 data	
selection	 and	 filtering	 process	 by	 specifying	 smaller	 values	 for	max.	 distance	 and	max.	 time	
difference.	The	result	will	be	a	subset	of	the	total	collocations	(temporary	user-collocated	data	
in	Figure	3.2).	On	the	GUI	the	user	should	notice	that	the	number	of	datasets	is	getting	smaller.	
After	 the	new	 (user-specific)	 collocation	 criteria	 are	 given,	 it	 is	 possible	 to	 continue	working	
with	this	user-collocated	dataset	(plotting,	statistics,	data	export,	etc.).		

	

GAIA-CLIM	deliverable	D5.4	
	

12	
	

	

Figure	3.2.	VO	GUI	Data	Flow	diagram	

	

Collocations	are	performed	with	the	collocation	engine	(Figure	3.2),	searching	over	all	datasets	
available	 for	 a	 certain	 ECV	 (for	 example,	 brightness	 temperature	 from	 processed	 GRUAN	
radiosondes	 are	 matched	 with	 the	 HIRS-4	 instruments	 from	 3	 different	 satellites,	 namely	
Metop-A,	Metop-B	 and	 NOAA-19).	 One	 radiosonde	 sounding	 results	 in	 one	 file	 per	 satellite	
resulting	for	this	example	in	a	maximum	of	3	files,	one	each	for	Metop-A,	Metop-B	and	NOAA-
19,	if	those	satellites	happen	to	pass	by	near	enough	in	time	and	space.	Collocated	data	for	a	
certain	 sounding	 (and	 satellite)	 are	 written	 into	 one	 file,	 including	 its	 metadata,	 global	
attributes,	 and	 observational	 data	 with	 uncertainties	 from	 all	 datasets	 matching	 the	
collocation	criteria.			

During	 a	 satellite	 overpass	 for	 a	 specific	 sounding	more	 than	 one	 pixel	 typically	 fullfills	 the	
collocation	criteria.	In	this	case,	up	to	48	such	pixels	are	kept,	ensuring	that	the	closest	in	time	
and	space	is	amongst	them.	For	the	vast	majority	of	collocations,	this	procedure	preserves	all	
matching	pixels.	The	observational	data	of	these	pixels	are	ordered	by	(effective)	distance	and	
then	 written	 into	 the	 collocation	 file.	 In	 the	 database,	 one	 collocation	 file	 forms	 one	
collocation	 even	 if	 it	 contains	 multiple	 pixels.	 The	 GUI	 presently	 displays	 the	 values	
corresponding	to	the	closest	cloudfree	pixel,	but	future	versions	of	the	GUI	may	allow	a	user	to	
choose	 specific	pixels	or	pool	 them	 in	 certain	ways.	 For	a	 validation	 scientist,	 this	 additional	
dimension	of	collocation	distance	may	be	of	interest	to	derive	correlation	lengths	for	a	variable	

GAIA-CLIM	deliverable	D5.4	
	

13	
	

under	 investigation	 such	 as	 water	 vapour	 or	 ozone.	 The	 data	 export	 feature	 preserves	 this	
information;	allowing	a	user	to	analyse	the	data	offline	with	more	specialised	tools.		

For	the	GRUAN	radiosonde	data	its	augmentation	with	NWP	simulations	introduces	additional	
complexities.	 Two	 such	 NWP	 models	 are	 presently	 in	 use	 by	 the	 VO:	 ECMWF	 and	 UK	
MetOffice.	The	NWP	data	is	needed	to	fill	in	reasonable	values	above	the	ceiling	altitude	of	the	
radiosonde	 that	 lies	 typically	between	25	and	33km	altitude.	 This	 is	done	with	either	model	
before	ingestion,	thus	duplicating	the	GRUAN	data	set	with	only	very	minor	yet	not	negligible	
differences.	 Additionally,	 there	 are	 simulations	 available	 from	 either	 of	 the	 NWP	 models	
interpolated	to	the	actual	flight	path	of	the	radiosonde	using	the	one	timestep	prognostic	NWP	
data	(typ.	6	hours	since	the	last	ingestion	of	observational	data	into	the	NWP).	This	results	in	
two	more	data	sets	per	original	sounding	resulting	in	a	total	of	4	datasets	a	user	may	choose	
from.	The	NWP	simulations	are	of	high	interest	to	the	NWP	community	(and	WP4)	to	validate	
the	NWP	and	achieve	reference	quality.	

In	addition	to	the	original	metadata	from	either	observation,	the	collocation	file	also	stores	the	
version	of	the	software	used	to	produce	this	collocation.	This	makes	also	the	collocation	step	
traceable	and	searchable	for	selective	re-processing	in	the	future.	

	

[3.2.1]	Correction	of	drift	in	radiosonde	data	
The	collocation	tool	STAMP	uses	a	pragmatic	approach	to	correct	for	some	of	the	systematic	
sampling	mismatch	errors	caused	by	the	drift	and	very	long	ascent	times	(approx..	2	hours)	in	
radiosonde	soundings.	This	is	a	simple	and	quite	certainly	imperfect	approach	that	nonetheless	
improves	the	quality	of	resulting	collocations	significantly.		

• An	analysis	of	existing	Level	1	radiosonde	data	that	used	the	launch	site	co-ordinates	
showed	 the	 best	 agreement	 with	 satellite	 data	 taken	 approx.	 30	 min	 after	 the	
radiosonde	 launch,	which	corresponded	to	a	pressure	 level	 (altitude)	of	the	sonde	of	
300	hPa.	This	is	to	be	expected	since	a	radiosonde	takes	typically	between	90	and	180	
min	to	reach	ceiling	altitude.	Instead	of	site	location	we	use	the	location	of	the	sonde	
when	 it	 crosses	 the	 300	 hPa	 layer	 to	 find	 the	 nearest	 collocation	 of	 the	 satellite	
observation.	

• We	use	the	resulting	differences	in	latitude/longitude	from	the	sonde	drift	to	derive	an	
airmass	motion	 vector	 and	 estimate	 the	movement	 of	 the	 air	mass	 sampled	 by	 the	
satellite	to	account	for	the	time	difference	between	the	2	observations	of	sonde	and	
satellite.	This	provides	an	“effective	distance”.	

Sonde	Drift:	ΔT	=T1	 (300hPa)	 -	T0(1000hPa)	 	 (approx.	30min).	For	 this	 time	difference	
we	extract	the	respective	difference	in	latitude	and	longitude	of	the	sonde	ΔLat,	ΔLon.	
Hence,	the	best	match	for	HIRS	observations	can	be	expected	for	(T1,	Lat1,	Lon1).		

• In	a	first	order	approximation	we	assume	that	air	masses	near	the	sonde	are	moving	
with	a	speed	vector	of	ΔLat/ΔT		and	ΔLong/ΔT.	

GAIA-CLIM	deliverable	D5.4	
	

14	
	

• Hence,	with	Tdiff=T1-TS	an	air	mass	sampled	by	satellite	at	(TS,LatS,LonS)	is	approx.	found	
at	(T1,	LatSeff		=LatS*Tdiff*	ΔLat/ΔT,	LonSeff		=LonS*Tdiff	*	ΔLon/ΔT)	from	which	we	calculate	
the	effective	distance	Deff=	(Lat1-	LatSeff,	Lon1-	LonSeff)	[km]	(Fig.	3.2.1).	

	

	
Figure	3.2.1	Correction	of	radiosonde	drift	
	

Example	of	 a	metadata	 excerpt	 from	a	processed	GRUAN	 radiosonde	 collocation	 file	 can	be	
found	from	Appendix	B,	Figure	B3.	

In	fact	this	example	in	Appendix	B	is	a	metadata	file	(collocation	file)	generated	by	DIS	that	the	
VO	data	 filter	uses	 for	quick	 search	of	 collocations	 for	user	 requests.	 Initially,	 the	 collocated	
data	 itself	 comes	 all	 in	 one	 netCDF	 file	 as	 a	 product	 of	 the	 collocation	 engine.	 Use	 of	 this	
collocation-file	 for	getting	 the	 real	measured	values	 is	 illustrated	 in	Figures	B2,	B3	and	B4	 in	
Appendix	B.	

	

[3.2.2]	Collocation	implementation	by	lookup	tables	method	
The	VO	offers	in	addition	to	the	measurement	uncertainties	also	uncertainties	originating	from	
collocation	mismatch	and	smoothing	errors.	This	complicated	task	is	simplified	by	using	Look-
up	 Tables	 (LUT).	 LUTs	 are	 the	 most	 cost-effective	 implementation	 of	 the	 complex	
developments	 and	 CPU-intensive	 computing.	 For	 example,	 integration	 of	 the	 Observing	
System	of	Systems	Simulator	for	Multi-mission	Synergies	Exploration	(OSSSMOSE)	simulations	
would	 have	 been	 completely	 impossible	 at	 this	 time	 within	 the	 VO	 due	 to	 the	 technical	
development	status	and	computational	demand	requirements	(ref.	D3.5).	

LUT	 tables	 for	 Total	 Ozone	 Column	 (TOC)	 are	 a	 contribution	 of	 BIRA.	 The	 aim	 is	 to	
include	 estimates	 of	 smoothing	 and	 collocation	 uncertainties	 in	 the	 VO	 in	 the	most	
efficient	way.	The	current	proposed	solution	for	total	ozone	columns	uses	LUTs	based	
on	full	OSSSMOSE	output	and	provided	as	hdf5	files.	This	provides	realistic	collocation	
uncertainties	 that	 are	 typical	 of	 a	 given	 location	 and	 season	 but	 may	 not	 be	 truly	
representative	of	 the	 instantaneous	uncertainty	depending	upon	 the	 variance	 in	 the	
fields.	
	

GAIA-CLIM	deliverable	D5.4	
	

15	
	

Smoothing	uncertainties	and	mean	errors	can	be	calculated	in	the	VO	by	interpolation	of	these	
LUTs.	 This	 can	 be	 done	 and	 added	 to	 the	 data	 at	 the	 time	 of	 data	 ingestion	 in	 the	 VO.	
Collocation	uncertainties	can	be	calculated	by	interpolation	at	the	moment	the	user	is	setting	
his/her	collocation	criteria.	

LUTs	 of	 smoothing	 uncertainties	 (spread	 on	 errors)	 and	mean	 errors	 (a.k.a.	 bias)	 have	 been	
computed	 by	 simulating	 1,000,000	 smoothing	 errors	 across	 the	 globe	 over	 6	 years	 of	 IFS-
MOZART	data	and	gridding	those	according	to	meaningful	coordinates:	

• ZSL-DOAS	 sunrise	measurements:	 zonal	monthly	means	 for	 1	 climatological	 year	 ->	
f(lat,	month)	

• ZSL-DOAS	 sunset	 measurements:	 zonal	 monthly	 means	 for	 1	 climatological	 year	 ->	
f(lat,	month)	

• Direct	sun	(Brewer	&	Dobson,	FTIR)	daily	mean	measurements:	zonal	monthly	means	
for	1	climatological	year	->	f(lat,	month)	

• Direct	sun	(Brewer	&	Dobson,	FTIR)	individual	measurements	:	zonal	monthly	means	
for	1	climatological	year	and	7	SZA	ranges	->	f(lat,month,	SZA)	

	

In	 a	 similar	 solution,	 LUTs	 for	 IASI-RAOB	 for	 collocation	 uncertainty	 and	 vertical	 smoothing	
come	as	a	contribution	of	UNIBG/CNR.	A	detailed	description	of	 the	derivation	and	usage	of	
LUTs	is	given	in	deliverables	D3.5	and	D3.6.		

The	LUTs	belong	to	the	“uncertainty	assessment	data”,	Figure	3.1.	They	are	stored	 in	the	VO	
database	 in	 JSON	 (originally	 Hdf5)	 format	 and	 used	 by	 the	Data	 Ingestion	 Script	 and	 by	 the	
collocation	engine	during	the	data	pre-processing	stage	(Figure	3.2).		

	

[3.3]	Data,	metadata	and	Data	Ingestion	Script	(DIS)	
	

Both	 the	data	and	metadata	 for	 the	VO	are	given	off-line.	 This	means	 that	 the	VO	does	not	
have	 any	direct	 access	 to	 on-line	 data	 repositories	 for	 this	 VO	 software	 version.	 The	data	 is	
offered	by	the	project	partners	for	demonstration	only	and	can	be	used	in	accordance	with	the	
policies	and	restrictions	given	by	the	original	data	providers	(e.g.	GRUAN	or	NDACC	networks,	
EUMETSAT).		

The	original	data	comes	in	diverse	formats.	Using	it	all	in	one	application	and	one	database	has	
been	challenging,	but	has	been	realized	with	data	harmonisation	and	ingestion	software	(DIS)	
(see	Appendix	B	for	a	detailed	description),	which	forms	one	of	the	key	components	of	the	VO.	

The	user	can	also	export	the	data.	This	feature	is	a	key	identified	user	requirement.		Currently,	
the	user	has	 the	option	 to	export	 any	graphical	 image	visible	on	 the	graphs	plot	pane	using	
plotly.js	 standard	 features,	 by	 clicking	 the	 “save	 image”	 icon	 at	 the	 upper	 part	 of	 the	 graph	

GAIA-CLIM	deliverable	D5.4	
	

16	
	

area.	 Whatever	 is	 visible	 on	 the	 screen	 can	 be	 saved	 to	 the	 user’s	 local	 computing	
environment.		

The	user	can	also	extract	any	datasets	currently	shown	(by	clicking	“export	data”	in	the	upper	
part	of	the	Data	selection	pane)	in	their	original	format,	either	single	or	collocated,	as	zipped	
netCDF	files.	Potentially,	 it	 is	possible	to	offer	access	to	the	VO	(and	 its	database)	 for	on-line	
use	driven	with	third	party	scripts	(and	RESTful	protocol).	This	means,	interacting	with	the	VO	
without	 its	GUI.	 This	 feature	 is	 not	 realised	 in	 this	 early	 version	of	 the	VO,	but	 it	 is	 a	 viable	
possibility	for	an	operational	VO	under	the	Copernicus	service	in	future.	

	

[3.4]	GUI	(functional	overview)	
	

The	technical	design	of	the	VO	and	GUI	is	based	on	user	requirements	derived	from	the	user	
survey	 and	 two	user	workshops.	 The	user	 survey	 confirmed	many	 assumptions	made	 in	 the	
proposal,	 in	particular,	 it	 reinforced	 the	 import	of	 core	 functionalities	 such	as	comparison	of	
data	sets,	radiative	transfer	capability,	selection	tools	for	data	and	data	formats.		

A	 new	 requirement	 from	 the	 survey	 is	 the	 usage	 of	 the	 VO	 for	 comparison	 of	 reference	
measurements	 with	 climate	model	 data,	 which	 will	 not	 be	 implemented	 within	 GAIA-CLIM,	
due	to	resource	limitations,	but	will	be	kept	as	a	potential	extension	towards	a	climate	service	
usage	of	the	VO	under	Copernicus	if	taken	forwards.	

The	GUI	offers	the	means	for	accessing	and	filtering	Earth	observational	data	recorded	in	the	
VO	database	 (including	 an	 option	 for	 tightening	 the	 collocation	 criteria),	 visualization	 of	 the	
results	 (plotting	 different	 statistics,	 uncertainties,	 collocation	 mismatch,	 and	 smoothing	
errors),	extracting	graphical	images	and	different	collocated	datasets	by	user-defined	criteria.		
By	 default,	 all	 observations	 in	 the	 VO	 database	 are	 pre-collocated	 (within	 6	 hours	 and	 500	
kilometres).	 These	 collocations	 are	 calculated	 with	 the	 collocation	 tool	 developed	 by	
EUMETSAT.		

The	main	 part	 of	 the	 VO	GUI	 has	 been	 developed	 as	 a	 one-page	 application.	 It	 has	 a	main	
menu	with	sub-menus	“data	selection”,	“tutorials”	and	“metadata”.	Clicking	on	the	GAIA-CLIM	
logo	or	the	welcome	message	will	open	the	GAIA-CLIM	home	page	www.gaia-clim.eu	in	a	new	
tab	where	 the	 user	 can	 read	 about	 the	 project	 and	 access	 its	 public	 documentation	 (public	
deliverables).		

GAIA-CLIM	deliverable	D5.4	
	

17	
	

	
Figure	3.4.1.	General	view	(VO	main	page):	
	

The	 “tutorials”	 sub-menu	 provides	 links	 to	 uploaded	 audio-visual	 materials	 that	 serve	 as	 a	
general	overview	(introduction	to	the	VO)	and	provide	guided	examples	of	how	to	use	the	VO	
with	metadata	and	observational	data.			

	
Figure	3.4.2.	Get	on-line	tutorials:	
	

GAIA-CLIM	deliverable	D5.4	
	

18	
	

Selecting	 “metadata”,	 the	 user	 is	 directed	 to	 the	 metadata	 visualization	 tool	 developed	 by	
CNR.	 Here	 the	 user	 can	 investigate	what	 kind	 of	 data	 is	 available,	 where	 is	 it	 available,	 for	
which	time	period	and	many	details	about	the	observations	at	the	site.	Additionally,	the	user	
can	check	the	quality	of	the	networks	presented	in	form	of	the	maturity	matrix	as	detailed	in	
the	deliverables	of	WP11.		

	
Figure	3.4.3.	How	to	reach	the	Metadata	view	
	

A	detailed	description	of	the	metadata	tool	is	provided	by	CNR	(see	D1.9).	This	short	overview	
is	restricted	to	screenshots	with	explanatory	comments	overlaid	in	red.	

																																																													
1		The	Maturity	Matrix	Assessment	is	available	online:	http://www.gaia-clim.eu/page/maturity-matrix-assessment		

GAIA-CLIM	deliverable	D5.4	
	

19	
	

	
Figure	3.4.4.	Metadata	main	menu	
	

	
Figure	3.4.5.	Metadata	main	menu	
	

	

GAIA-CLIM	deliverable	D5.4	
	

20	
	

	
Figure	3.4.6.	Metadata	main	menu		
	

The	Metadata	visualization	tool	has	a	capability	to	animate	satellite	overpasses	and	footprints.	
Needed	parameters	can	be	selected	from	the	lower	panel	at	the	left	side	of	the	web-page.	

	
Figure	3.4.7.	Metadata	main	menu.	Animation	of	overpasses	
	

GAIA-CLIM	deliverable	D5.4	
	

21	
	

Assuming	that	the	user	now	has	some	idea	of	what	data	he	or	she	is	interested	in	and	for	what	
observation	 types,	 periods	 and	 locations	 these	may	be	 available	 facilitated	by	 the	metadata	
tool,	 the	user	may	then	proceed	to	 interact	with	 the	main	observational	data	base	 featuring	
collocation	data.	

	
Figure	3.4.8.	Choosing	“data	selection”	from	VO	main	menu	and	refining	the	search	
	

For	 working	 with	 observational	 data,	 a	 user	 starts	 from	 the	 “essential	 climate	 variable	
product”	 sub-menu.	 It	 is	 not	 a	 requirement	 to	 query	 the	metadata	 first.	 If	 the	 user	 knows	
already	what	 is	 available	 and	what	 is	 needed	 for	 a	 certain	 investigation	 he	 or	 she	 can	 start	
directly	with	selecting	ECVs	with	different	filtering	options	as	provided	in	the	“data	selection”	
pane.		

The	user	is	given	the	option	not	only	to	look	at	collocation	data,	but	also	to	explore	the	original	
data	 from	a	single	 type	of	observation.	For	example,	 the	pressure,	 temperature,	humidity	or	
wind	 profiles	 from	 any	 particular	 radiosonde	 can	 be	 plotted.	 However,	 the	 most	 advanced	
feature	 and	 likely	 the	 most	 used	 application	 for	 the	 VO	 is	 to	 study	 collocation	 data,	 for	
example	the	HIRS-4	brightness	temperatures	from	Metop-A,	Metop-B	and	NOAA-19	satellites	
versus	GRUAN	 radiosondes	 after	 deriving	 the	 corresponding	 brightness	 temperature	 for	 the	
latter.		In	the	first	example	the	user	must	choose	“none”	in	the	“satellite	product”	section.	

GAIA-CLIM	deliverable	D5.4	
	

22	
	

	
Figure	3.4.9.	Plotting	the	results	
	

After	 “send	 data	 request”,	 the	 user	will	 see	 a	 number	 of	 available	 profiles	 according	 to	 the	
filtering	 criteria.	 Actual	 data	 plots	 can	 be	 seen	 on	 the	 right	 side	 (plot	 area).	 The	 user	 can	
choose	between	different	parameters	(available	from	this	profile)	and	axis.		

Zooming	and	saving	of	the	figures	can	be	chosen	from	the	upper	menus	above	each	plot.		

Between	“data	selection”	and	plot	area	the	user	can	find	a	switch	to	show	the	plots	only.	This	
option	is	used	to	give	more	space	for	working	with	graphical	images.		

	

Working	with	collocated	data:	

Filtering	 collocated	 data	 in	 “data	 selection”	 area	 does	 not	 differ	 from	 works	 with	 single	
profiles,	but	the	user	must	choose	a	“satellite	product”	instead	of	“none”.		

GAIA-CLIM	deliverable	D5.4	
	

23	
	

	
Figure	3.4.10.	Working	with	collocated	data,	example	for	brightness	temperatures	
	

The	results	will	be	plotted	in	a	similar	manner.	

	
Figure	3.4.11.	Working	with	collocated	data	
	

The	 user	 can	 plot	 different	 statistics	 either	 for	 a	 single	 dataset	 (by	 clicking	 on	 one	 of	 the	
datasets)	or	for	all	datasets	chosen	(by	clicking	“use	all	datasets”	button)	on	the	data	filtering	
and	selection	pane.	In	the	latter	case	the	GUI	plots	statistics	for	the	whole	dataset	chosen	and	
for	 the	 parameters	 chosen	 in	 the	 “statistics	 to	 plot”	 and	 “satellite	 parameter”	 drop-down	
menus.		

GAIA-CLIM	deliverable	D5.4	
	

24	
	

	
Figure	3.4.12.	“Use	all	dataset”	and	plot	statistics	functionality:	average	(on	the	left)	and	time	series	(on	
the	right)	of	brightness	temperatures	
	

	

[4] Summary	and	recommendations	
	

The	 WP5	 subtask	 of	 creating	 the	 GUI	 was	 led	 by	 TUT	 with	 significant	 contributions	 from	
EUMETSAT.	Metadata	visualization	 is	 fully	developed	by	CNR	and	 implemented	 in	CESIUM.	A	
more	tight	integration	with	the	VO	is	technically	possible,	but	will	only	be	pursued	if	it	serves	
the	 interests	 of	 the	 user	 community	 and	 if	 sufficient	 resources	 are	 available	 to	 do	 so.	
Technically,	the	CESIUM	engine	could	add	many	nice	additional	features	to	the	VO	(related	to	
satellite	overpasses).		

Detailed	 descriptions	 of	 how	 to	 use	 and	 further	 develop	 the	 VO	 belong	 naturally	 to	 the	
forthcoming	User	Guide	(D5.5)	and	the	video	tutorials	will	then	also	be	updated	in	accordance	
with	the	current	status	of	the	VO.	

	 	

GAIA-CLIM	deliverable	D5.4	
	

25	
	

Glossary		
	

CESIUM	 Cross-platform	virtual	globe	for	dynamic-data	visualisation	in	the	
space	and	defense	industries	

DOAS	 Differential	Optical	Absorption	Spectroscopy	

ECV	 Environmental	Climate	Variable		

EO	 Earth	Observation	

FTIR	 Fourier	Transform	Infrared	Spectroscopy	

GRUAN	 GCOS	Reference	Upper-Air	Network	

GUI	 Graphical	User	Interface	

ISO	 	 	 International	Standard	Office		

NetCDF	 Network	Common	Data	Form	

NDACC		 Network	for	Detection	of	Atmospheric	Composition	Change,		

VO	 The	Virtual	Observatory	of	GAIA-CLIM	

WMO	 	 	 World	Meteorological	Organization	

	

	 	

GAIA-CLIM	deliverable	D5.4	
	

26	
	

APPENDIX	 A:	 The	 Virtual	 Observatory	 and	
Tutorials	on	the	internet
	

The	VO	server	is	presently	located	on	a	server	at	TUT:		

http://193.40.13.83/vo/index.html#/	

After	clicking	on	the	central	puzzle	piece	labelled	“VO”	one	enters	the	interactive	area	
of	the	VO:	

http://193.40.13.83/vo/index.html	

	

https://youtu.be/Qt4edW3A8hc					GAIA-CLIM.eu	tutorial	part	1:	Introduction	

Tutorial	part	1	(Introduction):	The	Virtual	Observatory	of	the	GAIA-CLIM	project	
http://www.gaia-clim.eu	

	

https://youtu.be/OeshL9IVTKc						GAIA-CLIM.eu	tutorial	part	2:	Metadata	

Tutorial	part	3	(Metadata):	The	Virtual	Observatory	of	the	GAIA-CLIM	project	
http://www.gaia-clim.eu	

	

https://youtu.be/MKj0Y00KqMY					GAIA-CLIM.eu	tutorial	part	3:	Observational	Data	

Tags:	Earth	Observation,	Climate	Monitoring,	Satellite	Validation,	Meteorology,	GAIA-CLIM	

	 	

GAIA-CLIM	deliverable	D5.4	
	

27	
	

APPENDIX	B:	Data	Ingestion	Scripts	
	

The	Data	Ingestion	Scripts	(DIS)	implemented	in	the	Python	language	have	been	developed	for	
ingesting	 the	 information	 from	 source	 files	 into	 the	 DB	 of	 the	 VO.	 The	 DIS	 can	 handle	
observational	data	files	represented	in	the	netCDF-format.	In	addition,	the	scripts	can	be	used	
for	ingesting	Look-Up	Tables	(LUT)	in	Hdf-format	and	XML-files	represented	in	the	WIGOS	and	
ISO-19115	formats.	However,	information	from	source	files	is	not	directly	ingested	as	it	is,	but	
is	 converted	 into	 a	 unified	 format.	 The	 unification	 is	 applied	 for	 field	 names	 as	 well	 as	 for	
values	(e.g.	conversion	to	SI-units).	Moreover,	by	using	DIS	it	is	assured	that	all	documents	of	
the	same	kind	share	similar	structure	in	the	database.	

Altogether,	six	scripts	are	used	for	the	data	ingestion	(scripts	added	below):	

1) ingestion_main.py	 –	 after	 ensuring	 the	 data	 is	 not	 already	 ingested,	 the	main	 script	
calls	 other	 scripts	 to	 detect	 the	 format,	 read	 and	 homogenise	 the	 initial	 data,	 and	
ingest	the	data	into	the	database	based	on	type	and	format;	

2) config.py	–	 all	 environment	 variables	 as	well	 as	paths	 to	 conversion	dictionaries	 and	
output	files	containing	information	about	the	ingestion	results	are	defined	here;	

3) general_input.py	 –	 a	 script	 for	 detecting	 the	 initial	 data	 format	 and	 reading	 pre-
defined	 dictionaries	 including	 field	 names,	 measurand	 variables	 and	 units	 for	
homogenisation	purposes	(format-specific	txt-files	for	ISO-19115,	WIGOS	and	CCI-CF);	

4) metadata_conversion.py	–	all	that	have	a	part	in	reading	and	homogenising	metadata	
from	initial	data	in	ISO-19115,	WIGOS	and	CCI-CF	formats	is	included	here;	

5) measurement_conversion.py	 –	 for	 reading	 and	 homogenising	 measurand	 variable	
values	 and	 units	 included	 in	 initial	 netCDF	 files.	 Any	 restrictions	 based	 on	 quality	
information	 are	 also	 considered,	 such	 as	 the	qcflag	 and	qcinfo	 values	 in	 case	 of	 the	
GRUAN	processor;	

6) LUTs_conversion.py	–	for	reading	and	homogenising	LUTs	in	Hdf-format.	
	
During	 the	 conversion	 carried	 out	 using	 metadata_conversion.py	 and	
measurement_conversion.py,	when	needed,	any	original	field	from	the	source	files	is	split	into	
several	different	fields.	Also,	in	order	to	make	data	querying	more	convenient	at	a	later	stage,	
several	other	fields	may	be	added,	such	as	the	field	in	a	metadata	document	containing	the	list	
of	 all	 the	 variables,	 the	 values	 of	which	 have	 been	 estimated	 during	 the	 observations,	 links	
between	co-located	observations,	uncertainties	calculated	based	on	LUTs,	the	coordinate	field	
together	with	the	2dsphere	 index	for	geospatial	queries,	etc.	 In	order	to	retrieve	the	original	
data	file	from	the	server,	a	field	including	the	filename	and	path	in	the	server	is	added.	During	
the	 ingestion,	 initial	 files	 within	 a	 subfolder	 are	moved	 to	 a	 folder	 consisting	 all	 previously	
ingested	files.	All	rejected	files	are	stored	separately	to	ease	the	manual	inspection.	Output	file	
containing	 information	about	 the	 ingestion	 results	 is	written.	The	user	will	be	notified	about	
any	failures	or	new	undefined	data	fields	identified	during	the	ingestion.	

DIS	 ingests	metadata	and	observational	data	into	separate	Mongo	DB	collections	(Figure	B1).	
Regarding	observational	data,	one	document	per	observational	variable	 is	created.	 In	the	VO	

GAIA-CLIM	deliverable	D5.4	
	

28	
	

database,	 each	 piece	 of	 observational	 data	 is	 linked	 with	 its	 metadata	 using	 the	 Mongo	
ObjectId	value.	Co-located	observations	are	 linked	 in	 the	 same	way	 (Figure	B2).	However,	 in	
the	 case	 of	 co-located	 data,	 an	 additional	 collection	 has	 been	 created.	 The	 purpose	 of	 this	
collection	is	to	group	together	co-located	measurements	by	location	and	time,	each	document	
including	 links	 to	 their	metadata	documents	 (Figure	B3,	Figure	B4).	This	method	significantly	
simplifies	and	speeds	up	the	queries	for	retrieving	collocations	by	station,	start	date	and	time,	
or	 by	 collocation	 criteria	 –	 time	 window	 and	 spatial	 difference.	 It	 must	 be	 stressed	 that	
collocations	in	the	database	are	not	necessary	stored	in	pairs.	If	there	is	a	previously	ingested	
collocation	 data	 that	 matches	 with	 the	 new	 collocation	 by	 location	 and	 time	 and	 contains	
information	for	the	same	ECV,	the	latter	is	added	to	the	group	(three	methods	included	in	an	
example	in	Figure	B3).		

	

Figure	B1.	An	overall	principle	of	data	ingestion.	

	

	

GAIA-CLIM	deliverable	D5.4	
	

29	
	

Figure	 B2.	 An	 example	 document	 in	 the	 “collocations”	 collection	 (brightness	 temperature	
values	from	ECMWF	simulation).	Metadata	ObjectId	marked	with	red	is	used	in	Figure	B3	and	
Figure	B4.	

	

{"_id"	:	ObjectId("59a7b109ddb59344e45f8450"),	
				"measurand_variable"	:	"Brightness	temperature",	
				"metadata_CCI_CF_ID"	:	ObjectId("59a7b108ddb59344e45f8447"),	
				"start_date"	:	"2013-01-06",	
				"start_time"	:	"17:30:05",	
				"dimensions"	:	["nRefCollocations",	"Channel"],	
				"y_axis_variables"	:	["Channel"],	
				"name"	:	"ref_bt",	
				"units"	:	"K",	
				"long_name"	:	"ref_brightness_temperature",	
				"scale_factor"	:	"1.0",	
				"valid_min"	:	"0.0",	
				"valid_max"	:	"10000.0",	
				"fill_value"	:	"99999.0",	
				"values"	:	[
								[
												232.776580810547,		
												229.678085327148,		
												228.27848815918,		
												227.566696166992,		
												234.177001953125,		
												239.776153564453,		
												245.209426879883,		
												250.572357177734,		
												241.832504272461,		
												250.560012817383,		
												247.555313110352,		
												234.758178710938,		
												245.95703125,		
												239.742584228516,		
												233.455383300781,		
												231.04150390625,		
												249.326599121094,		
												251.030227661133,		
												251.24462890625	
					

GAIA-CLIM	deliverable	D5.4	
	

30	
	

	

Figure	 B3.	 An	 example	 document	 in	 the	 “collocation_IDs”	 collection,	 containing	 groups	 of	
collocations.	Metadata	ObjectId	marked	with	red	is	used	in	Figure	B4	(ECMWF	simulation).	

	

{	"_id"	:	ObjectId("59a7b109ddb59344e45f8464"),	
				"simulations"	:	{	
								"ECMWF"	:	{	
												"instrument"	:	"NWP	radiosonde	simulation	for	HIRSP",	
												"product"	:	"RTTOV	Brightness	Temperature	from	NWP",	
												"NWP_model"	:	"ECMWF	Atmospheric	Model",	
												"station_platform_name"	:	"Barrow",	
												"start_date"	:	"2013-01-06",	
												"start_time"	:	"17:30:05",	
												"collocation_time_diff_sec"	:	-8778,	
												"collocation_space_diff_km"	:	60.5577201843262,	
												"metadata_ID"	:	ObjectId("59a7b108ddb59344e45f8447"),	
												"monitored_metadata_ID"	:	ObjectId("59a7b109ddb59344e45f8452")}},	
				"satellite_products"	:	{	
								"HIRS	Brightness	Temperature"	:	{	
												"instrument"	:	"HIRS",	
												"product"	:	"Level_1c	Brightness	Temperature",	
												"start_date"	:	"2013-01-06",	
												"start_time"	:	"20:18:45",	
												"cloud_flag"	:	[1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	1,	0,	0,	1,	1,	1,	1,	1,	1]}},	
				"references"	:	{	
								"GRUAN	Radiosonde/RTTOV-ECMWF"	:	{	
												"instrument"	:	"Radiosonde	converted	to	BT	by	RTTOV",	
												"product"	:	"RTTOV	Brightness	Temperature",	
												"NWP_model"	:	"ECMWF	Atmospheric	Model",	
												"station_platform_name"	:	"Barrow",	
												"start_date"	:	"2013-01-06",	
												"start_time"	:	"17:30:05",	
												"collocation_time_diff_sec"	:	-8773,	
												"collocation_space_diff_km"	:	59.9454574584961,	
												"metadata_ID"	:	ObjectId("59a7b7fcddb59344e462ebe6"),	
												"monitored_metadata_ID"	:	ObjectId("59a7b7fcddb59344e462ebf1")}}}	

GAIA-CLIM	deliverable	D5.4	
	

31	
	

Figure	 B4.	 An	 example	 document	 in	 the	 “metadata_collocations”	 collection	 (ECMWF	
simulation).		

	
	
	
	
	
	
	

{"_id"	:	ObjectId("59a7b108ddb59344e45f8447"),	
				"monitored_or_reference"	:	"reference",	
				"collocation_IDs"	:	[
								ObjectId("59a7b109ddb59344e45f8452")],	
				"metadata_origin_format"	:	"CCI-CF",	
				"measurand_variable_list"	:	["Column",	"Row",	"Latitude",	"Longitude",	"Distance	difference",	"Time",	"Time	difference",	"Cos	ratio",	
"Brightness	temperature",	"Uncertainty	of	brightness	temperature"],	
				"collocation_software"	:	"STAMP,	version:	1.0.6-r106",	
				"ascent_duration"	:	99999.0,	
				"corresponding_level"	:	108.0,	
				"satellite"	:	"RTTOV	METOP2	NWP	simulation",	
				"instrument"	:	"NWP	radiosonde	simulation	for	HIRSP",	
				"product"	:	{"name"	:	"RTTOV	Brightness	Temperature	from	NWP"},	
				"start_date"	:	"2013-01-06",	
				"start_time"	:	"17:30:05",	
				"input_file"	:	"GProc-EC-metop_2_hirs_BAR-2013010617.nc",	
				"measuring_system_altitude"	:	99999.0,	
				"measuring_system_latitude"	:	71.3215484619141,	
				"measuring_system_longitude"	:	-156.622512817383,	
				"pressure_level_hPa"	:	300.0,	
				"processing_software"	:	"Unknown	NWP	version",	
				"station_platform_name"	:	"Barrow",	
				"surface_obs_pressure"	:	99999.0,	
				"time_offset_s"	:	1794.0,	
				"general"	:	{"site_code"	:	"BAR"},	
				"NWP"	:	{"model"	:	"ECMWF	Atmospheric	Model"},	
				"wavenumbers"	:	[0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0],	
				"max_time_diff"	:	21600.0,	
				"max_diff_VZA"	:	80.0,	
				"upper_latitude"	:	80.0,	
				"lower_latitude"	:	-80.0,	
				"east_longitude"	:	170.0,	
				"west_longitude"	:	-170.0,	
				"grid_latitude_step"	:	2.0,	
				"grid_longitude_step"	:	2.5,	
				"store_radiometric_info"	:	1.0,	
				"Channel"	:	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	16,	17,	18,	19],	
				"collocation_space_diff_km"	:	60.5577201843262,	
				"collocation_time_diff_sec"	:	-8778,	
				"collocation_space_diff_km_noneff"	:	57.9043159484863,	
				"latitude_noneff"	:	71.2220077514648,	
				"longitude_noneff"	:	-156.695678710938,	
				"original_filename":"gruan-300hPa-metopa-hirs-ec/GProc-EC-
metop_2_hirs_BAR2013010617+COLLOC_Ref_300hPa+MetOpA_HIRS+GRUAN_NWP-ECMWF_C_EUMS_20130106201845_20130106173005.nc"}	
	
	
	
	

GAIA-CLIM	deliverable	D5.4	
	

32	
	

	
ingestion_main.py	
	
import	xml.etree.cElementTree	as	ET	
import	netCDF4	
import	metadata_conversion	as	metadata_conversion	
import	measurement_conversion	
import	LUTs_conversion	
import	config	
import	collections	
import	general_input	
import	os	
import	time	
import	shutil	
import	logging	
from	bson.objectid	import	ObjectId	
	
	
def	ingest_data():	
					
				db,	coll_wigos,	coll_iso,	coll_cci,	coll_LUTs,	coll_meas,	coll_colloc,	coll_cci_colloc,	coll_cci_colloc_IDs,	mainpath,	output_dir,	
wigos_fields_filepath,	iso_fields_filepath,	netcdf_global_attr_fields_filepath,	\	
				netcdf_variable_attr_fields_filepath,	variable_names_units_filepath,	to_be_ingested_dir,	ingested_dir,	rejected_dir	=	
config.paths()	
					
				result,	resultpath,	warnings,	warningspath	=	config.logfile_setup(output_dir,	'w')	
				result.info('	Ingestion	started	at	'	+	time.strftime('%d/%m/%Y	%H:%M:%S'))	
	
				##	Read	input	files	with	unified	fieldnames,	variables,	attributes	and	units	
				iso_field_names,	iso_xpaths,	iso_field_IDs	=	general_input.xml_fields(iso_fields_filepath)	
				wigos_field_names,	wigos_xpaths,	wigos_field_IDs	=	general_input.xml_fields(wigos_fields_filepath)	
				netcdf_global_attr_field_names,	netcdf_global_attr_field_IDs	=	general_input.netcdf_fields(netcdf_global_attr_fields_filepath)	
				netcdf_variable_attr_field_names,	netcdf_variable_attr_field_IDs	=	
general_input.netcdf_fields(netcdf_variable_attr_fields_filepath)	
				variable_names,	units,	units_100	=	general_input.variable_names(variable_names_units_filepath)	
	
					
				files_ingested	=	general_input.files_already_in(ingested_dir)	
				CCI_CF_ID	=	''	
				ISO_19115_3_ID	=	''	
				LUTs_ID	=	''	
				files_ingested_before	=	files_ingested[:]	
				count_files_ingested_before	=	len(files_ingested_before)	
				count_files_to_be_ingested	=	0	
				cloudfree_percent	=	0	
					
				for	subdir,	dirs,	files	in	os.walk(to_be_ingested_dir):	
								for	f	in	files:	
												origFile	=	os.path.join(subdir,	f)	
												subdir_base	=	os.path.basename(os.path.normpath(subdir))	
												write_dir	=	ingested_dir	+	subdir_base	
												count_files_to_be_ingested	=	len(files)	
												allow_ingestion	=	True	
													
	
												if	f	not	in	files_ingested:	
																dataformat,	coll,	coll_meas,	xml_root,	logFile,	field_names,	xpaths,	field_IDs	=	general_input.detect_format(origFile,	
iso_field_names,	iso_xpaths,	iso_field_IDs,	wigos_field_names,	wigos_xpaths,	wigos_field_IDs,	netcdf_global_attr_field_names,	
netcdf_global_attr_field_IDs,	cloudfree_percent,	allow_ingestion,	subdir_base)	
	
																if	dataformat	==	'ISO	19115-3':	
																				coll_iso	=	coll	
																				f_in	=	open(mainpath	+	'ISO_19115_3_files_ingested.txt',	'w',	encoding='utf-8')	
																				f_in.write(time.strftime('%d/%m/%Y	%H:%M:%S	')	+	f	+	'\n')	
																				f_in.close()	
																				tree	=	ET.ElementTree(file=origFile)	
																				root	=	tree.getroot()	
	
																				with	open(origFile,	'r')	as	xml:	

GAIA-CLIM	deliverable	D5.4	
	

33	
	

																								xml_text=xml.read().replace('\n',	'')	
																								xml_text	=	"	".join(xml_text.split())	
	
																				field_values_found,	field_names_found,	xpaths_found,	field_IDs_found,	nb_of_param	=	
metadata_conversion.find_fields_iso_wigos(dataformat,	root,	origFile,	logFile,	field_names,	xpaths,	field_IDs,	variable_names)	
																				for	nb	in	range(nb_of_param):	
																								dic_iso,	stn_name,	network_name	=	metadata_conversion.iso_wigos_to_dict(dataformat,	coll_iso,	origFile,	
xml_text,	field_values_found,	field_names_found,	xpaths_found,	field_IDs_found,	nb,	xml_root,	f,	subdir_base)	
																								ISO_19115_3_ID	=	general_input.insert_data_to_mongo(dic_iso,	coll_iso,	f)	
																				general_input.make_dir(write_dir)	
																				shutil.move(origFile,	os.path.join(write_dir,	f))	
																				general_input.del_empty_dir(subdir)	
																				files_ingested.append(f)	
	
																if	dataformat	==	'CCI-CF':	
																				coll_cci	=	coll	
																				colloc_IDs	=	[]	
																				meas_types	=	[]	
																				drop_down_choices	=	[]	
																				start_dates	=	[]	
																				start_times	=	[]	
																				station_platform_names	=	[]	
																					
																					
																				if	coll_meas	==	coll_colloc:	
																								c_list	=	['reference',	'monitored']	
																									
																								coll_cci	=	coll_cci_colloc	
																								dic_cci_short	=	collections.OrderedDict()	
																				if	coll_meas	!=	coll_colloc:	
																								c_list	=	['single_measurement']	
																				for	c	in	c_list:	
##																								print	(c)	
																								field_values_found,	field_names_found,	field_IDs_found,	stn_name,	start_date,	start_time,	
measurement_observing_method,	ind_by_eff_dist,	cloudfree_percent,	allow_ingestion	=	
metadata_conversion.find_fields_cci(dataformat,	origFile,	logFile,	field_names,	variable_names,	field_IDs,	c,	cloudfree_percent,	
allow_ingestion,	subdir_base)	
									
																								dataformat2	=	False	
																								for	subdir2,	dirs2,	files2	in	os.walk(to_be_ingested_dir):																									
																												for	f2	in	files2:	
																																if	f[:-7]	in	f2	and	'.xml'	in	f2:			 #	try	to	insert	matching	WIGOS	and	CCI-CF	files	together	into	the	db	
																																				origFile2	=	os.path.join(subdir2,	f2)		
																																				dataformat2,	coll,	coll_meas,	xml_root2,	logFile2,	field_names2,	xpaths2,	field_IDs2	=	
general_input.detect_format(origFile2,	iso_field_names,	iso_xpaths,	iso_field_IDs,	wigos_field_names,	wigos_xpaths,	
wigos_field_IDs,	netcdf_global_attr_field_names,	netcdf_global_attr_field_IDs,	cloudfree_percent,	allow_ingestion,	subdir_base)	
																																				if	dataformat2	==	'WIGOS':	
																																								coll_wigos	=	coll	
																																								tree2	=	ET.ElementTree(file=origFile2)	
																																								root2	=	tree2.getroot()	
																																								with	open(origFile2,	'r')	as	xml2:	
																																												xml_text2=xml2.read().replace('\n',	'')	
																																												xml_text2	=	"	".join(xml_text2.split())	
																																								field_values_found2,	field_names_found2,	xpaths_found2,	field_IDs_found2,	nb_of_param2	=	
metadata_conversion.find_fields_iso_wigos(dataformat2,	root2,	origFile2,	logFile2,	field_names2,	xpaths2,	field_IDs2,	
variable_names)	
																																																																													
																																								dic_wigos,	stn_name,	network_name	=	metadata_conversion.iso_wigos_to_dict(dataformat2,	coll_wigos,	
origFile2,	xml_text2,	field_values_found2,	field_names_found2,	xpaths_found2,	field_IDs_found2,	nb_of_param2,	xml_root2,	f2,	
subdir_base)	
																																								WIGOS_ID	=	general_input.insert_data_to_mongo(dic_wigos,	coll_wigos,	f)	
																																									
																																									
																																								dic_cci	=	metadata_conversion.cci_to_dict(origFile,	dataformat,	coll_cci,	field_values_found,	
field_names_found,	field_IDs_found,	stn_name,	f,	subdir_base,	c)	
																																								CCI_CF_ID	=	general_input.insert_data_to_mongo(dic_cci,	coll_cci,	f)	
																																								colloc_IDs.append(CCI_CF_ID)	
																																									
	

GAIA-CLIM	deliverable	D5.4	
	

34	
	

																																								dics_meas,	measurand_variables	=	measurement_conversion.meas_nc_to_dict(origFile,	coll_meas,	
mainpath,	variable_names,	WIGOS_ID,	CCI_CF_ID,	stn_name,	start_date,	start_time,	measurement_observing_method,	
netcdf_variable_attr_field_names,	netcdf_variable_attr_field_IDs,	units,	units_100,	c,	ind_by_eff_dist,	subdir_base)	
																																								if	measurand_variables	!=	[]:	
																																												for	dic_meas	in	dics_meas:	
																																																measurements_ID	=	general_input.insert_data_to_mongo(dic_meas,	coll_meas,	f)	
																																												update_variable_list	=	{'measurand_variable_list':	measurand_variables}																													
																																												coll_cci.update({'_id':CCI_CF_ID},	{'$set':	update_variable_list},	upsert=False)	
																																												coll_wigos.update({'_id':WIGOS_ID},	{'$set':	update_variable_list},	upsert=False)	
																																												update_CCI_CF_ID	=	{'metadata_CCI_CF_ID':	CCI_CF_ID}	
																																												coll_wigos.update({'_id':WIGOS_ID},	{'$set':	update_CCI_CF_ID},	upsert=False)	
	
																																												update_pnan	=	{'programme_network_affiliation_name':	network_name}	
																																												coll_cci.update({'_id':CCI_CF_ID},	{'$set':	update_pnan},	upsert=False)	
																																												if	network_name	==	'EARLINET':	
																																																update_mom	=	{'measurement_observing_method':	'aerosol	lidar'}	
																																																coll_cci.update({'_id':CCI_CF_ID},	{'$set':	update_mom},	upsert=False)	
																																									
																																												try:	
																																																for	itm	in	coll_iso.find({'station_platform_name':stn_name,	
'programme_network_affiliation_name':network_name}):	
																																																				ISO_19115_3_ID	=	itm.get('_id')	
																																																				update	=	{"observation_data_present":	"True"}	
																																																				coll_iso.update({'_id':ISO_19115_3_ID},	{"$set":	update},	upsert=False)	
																																												except	AttributeError:	
																																																warnings.warning('	Station	'	+	stn_name	+	'	not	found	in	collection	metadata_ISO_19115_3')	
	
																																								if	c	==	c_list[-1]:	
																																												general_input.make_dir(write_dir)	
																																												shutil.move(origFile2,	os.path.join(write_dir,	f2))	
																																												shutil.move(origFile,	os.path.join(write_dir,	f))	
																																												general_input.del_empty_dir(subdir)	
																																												files_ingested.append(f2)	
																																												files_ingested.append(f)	
																																													
	
																								if	dataformat2	==	False:							#	if	matching	WIGOS	metadata	file	was	not	found,	insert	only	data	from	the	nc-file	
																												dic_cci	=	metadata_conversion.cci_to_dict(origFile,	dataformat,	coll_cci,	field_values_found,	field_names_found,	
field_IDs_found,	stn_name,	f,	subdir_base,	c)	
																												if	allow_ingestion	==	True:	
																																CCI_CF_ID	=	general_input.insert_data_to_mongo(dic_cci,	coll_cci,	f)	
																																colloc_IDs.append(CCI_CF_ID)	
																																if	coll_meas	==	coll_colloc:	
																																				
meas_type,drop_down_choice,dic_cci_short,start_date,start_time,meas_types_all,drop_down_menu_all,station_platform_name	
=	metadata_conversion.dic_cci_short(dic_cci,	dic_cci_short)	
																																				meas_types.append(meas_type)	
																																				drop_down_choices.append(drop_down_choice)	
																																				start_dates.append(start_date)	
																																				start_times.append(start_time)	
																																				station_platform_names.append(station_platform_name)	
	
																																network_name	=	''						
																																try:	
																																				network_name	=	dic_cci['programme_network_affiliation_name']	
																																except	(KeyError):	
																																				pass	
																																													
																																dics_meas,	measurand_variables	=	measurement_conversion.meas_nc_to_dict(origFile,	coll_meas,	mainpath,	
variable_names,	'',	CCI_CF_ID,	stn_name,	start_date,	start_time,	measurement_observing_method,	
netcdf_variable_attr_field_names,	netcdf_variable_attr_field_IDs,	units,	units_100,	c,	ind_by_eff_dist,	subdir_base)	
	
																																if	measurand_variables	!=	[]:	
																																				for	dic_meas	in	dics_meas:	
																																								measurements_ID	=	general_input.insert_data_to_mongo(dic_meas,	coll_meas,	f)	
																																				update_variable_list	=	{"measurand_variable_list":	measurand_variables}	
																																				coll_cci.update({'_id':CCI_CF_ID},	{"$set":	update_variable_list},	upsert=False)	
																																				try:	
																																								if	stn_name	!=	'':		#	update	metadata_ISO_19115_3	document	which	has	the	same	value	of	
'station_platform_name'	

GAIA-CLIM	deliverable	D5.4	
	

35	
	

																																												for	itm	in	coll_iso.find({'station_platform_name':stn_name,	
'programme_network_affiliation_name':network_name}):	
																																																ISO_19115_3_ID	=	itm.get('_id')	
																																																update	=	{'observation_data_present':	'True'}	
																																																coll_iso.update({'_id':ISO_19115_3_ID},	{'$set':	update},	upsert=False)	
																																				except	AttributeError:	
																																								warnings.warning('	Station	'	+	stn_name	+	'	not	found	in	collection	metadata_ISO_19115_3')	
	
																																				if	c	==	c_list[-1]:		
																																								general_input.make_dir(write_dir)	
																																								shutil.move(origFile,	os.path.join(write_dir,	f))	
																																								general_input.del_empty_dir(subdir)	
																																								files_ingested.append(f)	
	
																												else:															##	if	ingestion	is	not	allowed	
																																if	c	==	c_list[-1]:	
																																				general_input.make_dir(rejected_dir)	
																																				shutil.move(origFile,	os.path.join(rejected_dir,	f))	
																																				general_input.del_empty_dir(subdir)	
	
	
																								if	allow_ingestion	==	True:					
																												for	colloc_ID	in	colloc_IDs:	
																																colloc_IDs_copy	=	colloc_IDs[:]	
																																colloc_IDs_copy.remove(colloc_ID)	
																																update	=	{'collocation_IDs':	colloc_IDs_copy}	
																																coll_cci.update({'_id':colloc_ID},	{"$set":	update},	upsert=False)	
																					
																				##	applies	only	for	collocations_IDs	collection									
																				if	coll_meas	==	coll_colloc	and	allow_ingestion	==	True:	
																								coll_cci_colloc_IDs_found	=	False	
																								for	mt	in	range(len(meas_types_all)):	
																												if	coll_cci_colloc_IDs_found	!=	True:	
																																if	meas_types_all[mt]	!=	'satellite_products':	
																																				for	itm	in	coll_cci_colloc_IDs.find({meas_types[1]+'.'+drop_down_choices[1]+'.start_date'	:	start_dates[1],	
meas_types[1]+'.'+drop_down_choices[1]+'.start_time'	:	start_times[1],	
meas_types_all[mt]+'.'+drop_down_menu_all[mt]+'.start_date'	:	start_dates[0],	
meas_types_all[mt]+'.'+drop_down_menu_all[mt]+'.start_time'	:	start_times[0],	
meas_types_all[mt]+'.'+drop_down_menu_all[mt]+'.station_platform_name'	:	station_platform_names[0]}):	
																																								colloc_ID	=	itm.get('_id')	
																																								update1	=	{meas_types[0]+'.'+drop_down_choices[0]:	
dic_cci_short[meas_types[0]][drop_down_choices[0]]}	
																																								update2	=	{meas_types[0]+'.'+drop_down_choices[0]+'.metadata_ID'	:	colloc_IDs[0]}	
																																								update3	=	{meas_types[0]+'.'+drop_down_choices[0]+'.monitored_metadata_ID'	:	colloc_IDs[1]}	
																																								coll_cci_colloc_IDs.update({'_id':colloc_ID},	{"$set":	update1},	upsert=False)	
																																								coll_cci_colloc_IDs.update({'_id':colloc_ID},	{"$set":	update2},	upsert=False)	
																																								coll_cci_colloc_IDs.update({'_id':colloc_ID},	{"$set":	update3},	upsert=False)	
																																								coll_cci_colloc_IDs_found	=	True	
																																								continue	
																								if	coll_cci_colloc_IDs_found	==	False:	
																												CCI_CF_ID_short	=	general_input.insert_data_to_mongo(dic_cci_short,	coll_cci_colloc_IDs,	f)	
																												update1	=	{meas_types[0]+'.'+drop_down_choices[0]+'.metadata_ID'	:	colloc_IDs[0]}	
																												update2	=	{meas_types[0]+'.'+drop_down_choices[0]+'.monitored_metadata_ID'	:	colloc_IDs[1]}	
																												coll_cci_colloc_IDs.update({'_id':CCI_CF_ID_short},	{"$set":	update1},	upsert=False)	
																												coll_cci_colloc_IDs.update({'_id':CCI_CF_ID_short},	{"$set":	update2},	upsert=False)																									
	
																	
																if	dataformat	==	'HDF':													##	in	the	case	of	LUTs	
																				if	coll	==	coll_LUTs:	
																								dics	=	LUTs_conversion.LUTs_to_dict(f,	origFile,	coll,	mainpath)	
																								LUTs_ID	=	general_input.insert_data_to_mongo(dics,	coll_LUTs,	f)	
																								general_input.make_dir(write_dir)	
																								shutil.move(origFile,	os.path.join(write_dir,	f))	
																								general_input.del_empty_dir(subdir)	
																								files_ingested.append(f)	
																									
																				else:	
																								result.error('	Not	able	to	read	data	from	HDF-file:	'	+	subdir_base	+	'/'	+	f)	
																								warnings.error('	Not	able	to	read	data	from	HDF-file:	'	+	subdir_base	+	'/'	+	f)	
	
																													

GAIA-CLIM	deliverable	D5.4	
	

36	
	

												else:																																			##	if	this	file	has	been	ingested	before	
																if	f	in	files_ingested_before:	
																				result.error('	File	already	ingested:	'	+	subdir_base	+	'/'	+	f)	
																				warnings.error('	File	already	ingested:	'	+	subdir_base	+	'/'	+	f)	
																				general_input.make_dir(rejected_dir)	
																				shutil.move(origFile,	os.path.join(rejected_dir,	f))	
																				general_input.del_empty_dir(subdir)	
																	
																																										
				if	CCI_CF_ID	==	''	and	ISO_19115_3_ID	==	''	and	LUTs_ID	==	'':	
								result.warning('	No	new	data	found!')	
								warnings.warning('	No	new	data	found!')	
	
				result.info('	Ingestion	ended	at	'	+	time.strftime('%d/%m/%Y	%H:%M:%S'))	
				result.info('	Number	of	files	ingested:	'	+	str(len(files_ingested)-count_files_ingested_before))	
				result.info('	Number	of	files	rejected:	'	+	str(count_files_to_be_ingested	+	count_files_ingested_before	-	len(files_ingested)))	
				result.info('	Number	of	documents	in	LUTs	collection:	'	+	str(coll_LUTs.count()))	
				result.info('	Number	of	documents	in	measurements	collection:	'	+	str(coll_meas.count()))	
				result.info('	Number	of	documents	in	metadata_CCI_CF	collection:	'	+	str(coll_cci.count()))	
				result.info('	Number	of	documents	in	metadata_ISO_19115_3	collection:	'	+	str(coll_iso.count()))	
				result.info('	Number	of	documents	in	metadata_WIGOS	collection:	'	+	str(coll_wigos.count()))	
				result.info('	Number	of	documents	in	collocations	collection:	'	+	str(coll_colloc.count()))	
				result.info('	To	see	all	warnings	and	errors,	please	see	'	+	output_dir	+	'warnings.txt')	
				general_input.append_permanent_logfile(warningspath,	resultpath)	
					
ingest_data()	

	 	

GAIA-CLIM	deliverable	D5.4	
	

37	
	

config.py	
	
from	pymongo	import	MongoClient	
import	logging	
import	os	
	
	
def	paths():	
				client	=	MongoClient('localhost',	27017)	
				db	=	client.VO	
					
				coll_wigos	=	db.metadata_WIGOS	
				coll_cci	=	db.metadata_CCI_CF	
				coll_iso	=	db.metadata_ISO_19115_3	
				coll_LUTs	=	db.LUTs	
				coll_meas	=	db.measurements	
				coll_colloc	=	db.collocations	
				coll_cci_colloc	=	db.metadata_CCI_CF_collocations	
				coll_cci_colloc_IDs	=	db.collocations_IDs	
					
				mainpath	=	'C:/GAIA_CLIM/VO_db/data/'	
				scriptpath	=	os.path.dirname(os.path.abspath(__file__))	
	
				wigos_fields_filepath	=	scriptpath	+	'/input_fields/wigos_fields.txt'	
				iso_fields_filepath	=	scriptpath	+	'/input_fields/iso-19115_fields.txt'	
				netcdf_global_attr_fields_filepath	=	scriptpath	+	'/input_fields/cci-cf_global_attr_fields.txt'	
				netcdf_variable_attr_fields_filepath	=	scriptpath	+	'/input_fields/cci-cf_variable_attr_fields.txt'	
				variable_names_units_filepath	=	scriptpath	+	'/input_fields/variable_names_units.txt'	
					
				to_be_ingested_dir	=	mainpath	+	'to_be_ingested'	
				ingested_dir	=	mainpath	+	'ingested/'	
				rejected_dir	=	ingested_dir	+	'rejected/'	
				output_dir	=	scriptpath	+	'/output/'	
	
				return	db,	coll_wigos,	coll_iso,	coll_cci,	coll_LUTs,	coll_meas,	coll_colloc,	coll_cci_colloc,	coll_cci_colloc_IDs,	mainpath,	
output_dir,	wigos_fields_filepath,	iso_fields_filepath,	netcdf_global_attr_fields_filepath,	netcdf_variable_attr_fields_filepath,	
variable_names_units_filepath,	to_be_ingested_dir,	ingested_dir,	rejected_dir	
	
	
	
def	logfile_setup(output_dir,	mode,	level=logging.INFO):	
				formatter	=	logging.Formatter('%(levelname)s:%(message)s')	
	
				resultpath	=	output_dir	+	'result.txt'	
				handler1	=	logging.FileHandler(resultpath)	
				fileHandler1	=	logging.FileHandler(resultpath,	mode=mode)	
				handler1.setFormatter(formatter)	
				result	=	logging.getLogger('logfile_result')	
				result.setLevel(level)	
				result.addHandler(handler1)	
	
				warningspath	=	output_dir	+	'warnings.txt'	
				handler2	=	logging.FileHandler(warningspath)	
				fileHandler2	=	logging.FileHandler(warningspath,	mode=mode)	
				handler2.setFormatter(formatter)	
				warnings	=	logging.getLogger('logfile_warnings')	
				warnings.setLevel(level)	
				warnings.addHandler(handler2)	
					
				return	result,	resultpath,	warnings,	warningspath	
	 	

GAIA-CLIM	deliverable	D5.4	
	

38	
	

general_input.py	
	
import	os,	errno	
import	config	
import	logging	
import	time	
from	pathlib	import	Path	
import	metadata_conversion	
	
	
db,	coll_wigos,	coll_iso,	coll_cci,	coll_LUTs,	coll_meas,	coll_colloc,	coll_cci_colloc,	coll_cci_colloc_IDs,	mainpath,	output_dir,	
wigos_fields_filepath,	iso_fields_filepath,	netcdf_global_attr_fields_filepath,	\	
				netcdf_variable_attr_fields_filepath,	variable_names_units_filepath,	to_be_ingested_dir,	ingested_dir,	rejected_dir	=	
config.paths()	
result	=	logging.getLogger('logfile_result')	
warnings	=	logging.getLogger('logfile_warnings')	
	
	
#	reads	data	from	*.txt	file	which	contains	field	names,	xpaths	and	fields	IDs	for	ISO-19115	and	WIGOS	metadata	ingestion								
def	xml_fields(xpath_filepath):	
	
				field_names	=	[]	
				xpaths	=	[]	
				field_IDs	=	[]	
				f	=	open(xpath_filepath,	'r')	
				for	row	in	f:	
								row	=	row.strip('\n')	
								row	=	row.split(',	')	
								field_names.append(str(row[0]))	
								xpaths.append(str(row[1]))	
								field_IDs.append(str(row[2]))	
				f.close()	
				return	field_names,	xpaths,	field_IDs	
	
	
#	reads	data	from	*.txt	file	which	contains	unified	variable	names	and	their	possible	names	in	nc-files				
def	variable_names(filepath):	
	
				variable_names	=	[]	
				units	=	[]	
				units_100	=	[]	
				f	=	open(filepath,	'r')	
				for	row	in	f:	
								one_variable	=	[]	
								one_unit	=	[]	
								one_unit_100	=	[]	
								row	=	row.strip('\n')	
								row	=	row.split(';')	
								counter	=	0	
								for	elem	in	row:	
												elem	=	elem.strip("[]")	
												el	=	elem.split(",	")	
												for	e	in	el:	
																if	counter	==	0:	
																				one_variable.append(str(e))	
																if	counter	==	1:	
																				one_unit.append(str(e))	
																if	counter	==	2:	
																				one_unit_100.append(str(e))	
												counter	+=	1	
								variable_names.append(one_variable)	
								units.append(one_unit)	
								units_100.append(one_unit_100)	
				f.close()	
				return	variable_names,	units,	units_100	
	
	
#	reads	data	from	*.txt	file	which	contains	field	names	and	fields	IDs	for	CCI-CF	metadata	ingestion				
def	netcdf_fields(filepath):	
	

GAIA-CLIM	deliverable	D5.4	
	

39	
	

				field_names	=	[]	
				field_IDs	=	[]	
				f	=	open(filepath,	'r')	
				for	row	in	f:	
								row	=	row.strip('\n')	
								row	=	row.split(',	')	
								field_names.append(str(row[0]))	
								r	=	[]	
								for	n	in	range(1,	len(row)):	
												r.append(str(row[n]))	
								field_IDs.append(r)	
				f.close()	
				return	field_names,	field_IDs	
	
	
#	check	which	ISO,	WIGOS	and	CCI-CF	files	are	already	ingested	
def	files_already_in(ingested_dir):	
					
				files_ingested	=	[]	
				for	subdir,	dirs,	files	in	os.walk(ingested_dir):	
								for	f	in	files:	
												files_ingested.append(f)	
													
				return	files_ingested	
	
	
#	detects	the	format	of	the	original	file	
def	detect_format(origFile,	iso_field_names,	iso_xpaths,	iso_field_IDs,	wigos_field_names,	wigos_xpaths,	wigos_field_IDs,	
netcdf_global_attr_field_names,	netcdf_global_attr_field_IDs,	cloudfree_percent,	allow_ingestion,	subdir_base):	
	
				f	=	open(origFile,	'r')	
				dataformat	=	'Unknown'	
				if	origFile[-3:]	==	'.nc':	
								xml_root	=	''	
								logFile	=	mainpath	+	'logfile_cci-cf_to_db.txt'	
								field_names	=	netcdf_global_attr_field_names	
								xpaths	=	''	
								field_IDs	=	netcdf_global_attr_field_IDs	
								coll	=	coll_cci	
								dataformat	=	'CCI-CF'	
								field_values_found,	field_names_found,	field_IDs_found,	stn_name,	start_date,	start_time,	
measurement_observing_method,	ind_by_eff_dist,	cloudfree_percent,	allow_ingestion	=	
metadata_conversion.find_fields_cci(dataformat,	origFile,	logFile,	field_names,	[],	field_IDs,	'single_measurement',	
cloudfree_percent,	allow_ingestion,	subdir_base)	
								if	'collocation_software'	in	field_names_found:	
												coll_measurement	=	coll_colloc	
								else:	
												coll_measurement	=	coll_meas	
	
									
				if	origFile[-3:]	==	'.h5':	
								dataformat	=	'HDF'	
								xml_root	=	''	
								logFile	=	mainpath	+	'logfile_hdf_to_db.txt'	
								field_names	=	netcdf_global_attr_field_names	
								xpaths	=	''	
								field_IDs	=	netcdf_global_attr_field_IDs	
								coll_measurement	=	coll_meas	
								if	'LUT_TOC_'	in	origFile:	
												coll	=	coll_LUTs	
								else:	
												coll	=	coll_cci	
	
				if	origFile[-4:]	==	'.xml':					
								for	row	in	f:	
												if	'gaiaClimMetadataType'	in	row:	
																dataformat	=	'WIGOS'	
																xml_root	=	'/gaiaClimMetadataType/'	
																logFile	=	mainpath	+	'logfile_wigos_to_db.txt'	
																field_names	=	wigos_field_names	
																xpaths	=	wigos_xpaths	

GAIA-CLIM	deliverable	D5.4	
	

40	
	

																field_IDs	=	wigos_field_IDs	
																coll	=	coll_wigos	
												if	'ISO	19115-3'	in	row:	
																dataformat	=	'ISO	19115-3'	
																xml_root	=	'/mdb:MD_Metadata/'	
																logFile	=	mainpath	+	'logfile_iso_to_db.txt'	
																field_names	=	iso_field_names	
																xpaths	=	iso_xpaths	
																field_IDs	=	iso_field_IDs	
																coll	=	coll_iso	
								coll_measurement	=	coll_meas	
				if	dataformat	==	'Unknown':	
								result.error('	File	'	+	subdir_base	+	'/'	+	origFile	+	'	-	unknown	format!')	
								warnings.error('	File	'	+	subdir_base	+	'/'	+	origFile	+	'	-	unknown	format!')	
								f.close()	
								return	dataformat,'','','','','','',''	
				f.close()	
				return	dataformat,	coll,	coll_measurement,	xml_root,	logFile,	field_names,	xpaths,	field_IDs	
	
											
	
#	inserts	metadata	in	the	unified	format	into	the	database	
def	insert_data_to_mongo(dic,	coll,	f):	
					
				mongo_ID	=	coll.insert(dic)					
				counted	=	coll.count()	
				return	mongo_ID	
	
	
##	create	a	directory	if	it	does	not	exsist	
def	make_dir(directory):	
					
				try:	
								os.makedirs(directory)	
				except	OSError	as	e:	
								if	e.errno	!=	errno.EEXIST:	
												raise	
	
	
##	if	a	directory	is	empty,	delete	this	
def	del_empty_dir(directory):	
					
				if	not	os.listdir(directory):	
								os.rmdir(directory)	
	
	
	
def	append_permanent_logfile(warningspath,	resultpath):	
	
				permanent_output_filepath	=	output_dir	+	'permanent_output.txt'	
				my_file	=	Path(permanent_output_filepath)	
				if	my_file.is_file():	
								w_mode	=	'a'	
				else:	
								w_mode	=	'w'	
				filenames	=	[warningspath,	resultpath]	
				with	open(permanent_output_filepath,	w_mode)	as	outfile:	
								outfile.write('---'	+	'\n')	
								for	fname	in	filenames:	
												with	open(fname)	as	infile:	
																for	line	in	infile:	
																				outfile.write(line)	
								outfile.write('---')	
	

	 	

GAIA-CLIM	deliverable	D5.4	
	

41	
	

metadata_conversion.py	
	
import	pymongo	
import	json	
import	xmltodict	
import	collections	
import	netCDF4	
import	time	
from	text_unidecode	import	unidecode	
from	datetime	import	datetime	
from	bson.objectid	import	ObjectId	
from	bson	import	json_util	
import	config	
import	logging	
import	numpy	as	np	
import	math	
	
db,	coll_wigos,	coll_iso,	coll_cci,	coll_LUTs,	coll_meas,	coll_colloc,	coll_cci_colloc,	coll_cci_colloc_IDs,	mainpath,	output_dir,	
wigos_fields_filepath,	iso_fields_filepath,	netcdf_global_attr_fields_filepath,	\	
				netcdf_variable_attr_fields_filepath,	variable_names_units_filepath,	to_be_ingested_dir,	ingested_dir,	rejected_dir	=	
config.paths()	
result	=	logging.getLogger('logfile_result')	
warnings	=	logging.getLogger('logfile_warnings')	
	
	
def	split_uppercase(s):	
				r	=	[]	
				l	=	False	
				count	=	0	
				for	c	in	s:	
								#	l	being:	last	character	was	not	uppercase	
								if	l	and	c.isupper():	
												r.append('	')	
								l	=	not	c.isupper()	
								if	count	==	0:	
												r.append(c.upper())	
								else:	
												r.append(c)	
								count	+=	1	
				return	''.join(r)	
	
	
#Given	two	dicts,	merge	them	into	a	new	dict	as	a	shallow	copy	
def	merge_two_dicts(x,	y):	
					
				z	=	x.copy()	
				z.update(y)	
				return	z	
	
	
	
#	convert	the	field	value	to	float			
def	if_number(value,	formatting):	
					
				try:	
								if	formatting	==	'float':	
												value	=	float(value)	
								else:	
												value	=	int(value)	
				except	(ValueError,	TypeError):	
								value	=	value	
				return	value	
	
	
#	search	the	fields	determined	by	cci-cf_fields.txt	in	CCI-CF	netCDF4	files		
def	find_fields_cci(dataformat,	origFile,	logFile,	field_names,	variable_names,	field_IDs,	c,	cloudfree_percent,	allow_ingestion,	
subdir_base):	
	
				
				field_values_found	=	[]	

GAIA-CLIM	deliverable	D5.4	
	

42	
	

				field_names_found	=	[]	
				field_IDs_found	=	[]	
				stn_name	=	''	
				measurement_observing_method	=	''	
				distance_diff	=	''	
				ind_by_eff_dist	=	0	
				time_diff	=	''	
				nb_of_param	=	1	
				date_format	=	"%Y-%m-%d"	
				time_format	=	"%H:%M:%S"	
	
				if	c	==	'reference':	
								c2	=	'ref_'	
								except_fields	=	'monitored_'	
				if	c	==	'monitored':	
								except_fields	=	'reference_'	
								c2	=	'mon_'	
				if	c	==	'single_measurement':	
								except_fields	=	'nothing_to_except'	
								c2	=	'single_'	
									
				if	dataformat	==	'CCI-CF':	
								j	=	netCDF4.Dataset(origFile,	mode='r')	
									
								keys	=	list(j.variables.keys())	
								attrs	=	list(j.ncattrs())	
									
								attrs_val	=	[]	
								for	a	in	j.ncattrs():	
												val	=	getattr(j,	a)	
##												print	(val)	
												attrs_val.append(val)	
	
								attrs_found	=	[]																	
								for	elem	in	range(len(field_IDs)):	
												for	nc_path	in	field_IDs[elem]:	
##																print	(nc_path)	
																if	nc_path	in	attrs	and	except_fields	not	in	field_names[elem]:	
																				attrs_found.append(nc_path)	
																				ind	=	attrs.index(nc_path)	
																				field_IDs_found.append(attrs[ind])	
																				value	=	attrs_val[ind]	
																				if	field_names[elem]	==	'programme_network_affiliation_name'	and	'	'	in	value:	
																								values	=	value.split('	')	
																								for	v	in	values:	
																												if	v.upper()	==	"GRUAN"	or	v.upper()	==	"WOUDC":	
																																value	=	v.upper()	
																				if	field_names[elem]	==	'monitored_product.name':	
																								if	'TemperatureMonitored'	in	value:	
																												value	=	value.replace('TemperatureMonitored',	'Temperature')	
																				if	field_names[elem]	==	'monitored_satellite':	
																								if	value	==	'N1919':	
																												value	=	'N19'	
	
																				if	field_names[elem]	==	'station_platform_model'	or	field_names[elem]	==	'measurement_observing_method':	
																								if	'	'	in	value:	
																												values	=	value.split('	')	
																												for	v	in	values:	
																																v	=	v.lower()	
																																if	v	==	'ozonsesonde'	or	v	==	'ozonesonde':	
																																				value	=	'ozonesonde'	
																																if	v	==	'gruan':	
																																				value	=	'radiosonde'	
																								if	field_names[elem]	==	'station_platform_model':	
																												if	value	==	'jpss':	
																																value	=	'JPSS	ATMS'	
	
																				if	field_names[elem]	in	values_split:	
																								if	'	'	in	str(value):	
																												values	=	value.split()	
																												value	=	values[0]	

GAIA-CLIM	deliverable	D5.4	
	

43	
	

	
																				if	'station_platform_name'	in	field_names[elem]:	
																								value	=	split_uppercase(value)	
																								value	=	'	'.join(value.split())	
																								if	','	in	value:	
																												values	=	value.split(',')	
																												value	=	values[0]	
																								stn_name	=	value	
																									
																				if	field_names[elem]	!=	'product.version'	and	field_names[elem]	!=	'general.type.version':	
																								if	field_names[elem][-3:]	==	".id"	or	field_names[elem][-3:]	==	"_id":	
																												value	=	if_number(value,	'int')	
																								else:	
																												value	=	if_number(value,	'float')	
	
																				if	field_names[elem]	==	'measurement_observing_method'	and	nc_path	==	'instrument':	
																								measurement_observing_method	=	value	
																								if	'LIN-'	in	origFile:	
																												stn_name	=	'Lindenberg'	
	
																				if	field_names[elem]	==	'Channel'	or	field_names[elem]	==	'Wavenumber'	or	field_names[elem]	==	
'reference_wavenumbers':	
																								value	=	value.tolist()																					
																													
																				if	value	!=	'	'	and	value	!=	'':	
																								field_names_found.append(field_names[elem])	
																								field_values_found.append(value)	
	
	
								if	'channels'	not	in	field_names_found:	
												for	dim	in	j.dimensions:	
																if	dim	==	'ch_ref':	
																				channel_list	=	list(range(1,	20))	
																				field_names_found.append('Channel')	
																				field_values_found.append(channel_list)	
	
	
																					
								if	c	in	['monitored','reference']:	
												keys	=	list(j.variables.keys())	
												if	'mon_aod550'	in	keys:	
																vals	=	np.asarray(j.variables['time_diff'])														
																time_diff_list	=	vals.tolist()	
																vals	=	np.asarray(j.variables['distance'])	
																dist_list	=	vals.tolist()	
																field_names_found.append('collocation_space_diff_km')	
																field_values_found.append(dist_list[0])	
																field_names_found.append('collocation_time_diff_sec')	
																field_values_found.append(time_diff_list[0])	
	
																for	variable_name	in	variable_names:	
																				for	key	in	keys:	
																								if	key.lower().replace(c2,'')	in	variable_name:	
																												vals	=	np.asarray(j.variables[key.lower()])		
																												if	variable_name[0]	==	'longitude':	
																																field_names_found.append('longitude')	
																																field_values_found.append(float(vals[0]))	
																												if	variable_name[0]	==	'latitude':	
																																field_names_found.append('latitude')	
																																field_values_found.append(float(vals[0]))	
	
	
																	
												else:	
																try:	
																				vals	=	np.asarray(j.variables['eff_distance'])	
																				eff_dist_list	=	vals.tolist()	
																				for	i	in	range(len(eff_dist_list)):	
																								if	math.isnan(eff_dist_list[i])	or	eff_dist_list[i]	>	1000:	
																												allow_ingestion	=	False	

GAIA-CLIM	deliverable	D5.4	
	

44	
	

																												warnings.warning('	Data	from	'	+	subdir_base	+	'/'	+	origFile.split('\\')[-1]	+	'	was	not	ingested	-	meaningful	values	
for	"Effective	distance"	missing')	
																												break	
																									
																				vals	=	np.asarray(j.variables['time_diff'])														
																				time_diff_list	=	vals.tolist()	
																				vals	=	np.asarray(j.variables['distance'])	
																				dist_list	=	vals.tolist()	
																				vals	=	np.asarray(j.variables['mon_eff_lat'])	
																				mon_eff_lat_list	=	vals.tolist()	
																				vals	=	np.asarray(j.variables['mon_eff_lon'])	
																				mon_eff_lon_list	=	vals.tolist()	
																				vals	=	np.asarray(j.variables['mon_bt'])	
																				mon_bt_list	=	vals.tolist()	
																				ind_by_eff_dist_pre_list	=	[]	
																				for	n	in	range(len(eff_dist_list)):	
																								if	all(e	>=	180	for	e	in	mon_bt_list[n]):	
																												ind_by_eff_dist_pre_list.append(n)	
																													
																				if	ind_by_eff_dist_pre_list	==	[]:	
																								allow_ingestion	=	False	
																								ind_by_eff_dist	=	0	
																								warnings.warning('	Data	from	'	+	subdir_base	+	'/'	+	origFile.split('\\')[-1]	+	'	was	not	ingested	-	meaningful	values	for	
"Brightness	temperature"	missing')	
																									
																				ind_by_eff_dist_pre	=	ind_by_eff_dist_pre_list[0]	
																				ind_by_eff_dist	=	ind_by_eff_dist_pre_list[0]	
																				vals	=	np.asarray(j.variables['mon_cloud_flag']).tolist()	
	
																				if	vals[ind_by_eff_dist_pre][7]	==	1:							##	search	for	measurements	made	by	monitored	instrument	with	no	low	
clouds	but	more	far	away	(effective	distance	increasing)	
																								for	i	in	ind_by_eff_dist_pre_list[1:]:	
																												if	vals[i][7]	==	0:	
																																ind_by_eff_dist	=	i	
																																break	
	
																				if	ind_by_eff_dist	==	ind_by_eff_dist_pre:						##	in	case	of	low	clouds	were	present	in	all	collocations,	search	the	
nearest	pixel	without	high	clouds	
																								for	i	in	ind_by_eff_dist_pre_list:	
																												if	vals[i][11]	==	0	or	vals[i][12]	==	0:	
																																ind_by_eff_dist	=	i	
																																break	
																																					
																				field_names_found.append('collocation_space_diff_km')	
																				field_values_found.append(eff_dist_list[ind_by_eff_dist])	
																				field_names_found.append('collocation_time_diff_sec')	
																				field_values_found.append(time_diff_list[ind_by_eff_dist])	
																				field_names_found.append('collocation_space_diff_km_noneff')	
																				field_values_found.append(dist_list[ind_by_eff_dist])	
																					
																except:	
																				pass	
	
																	
																try:	
																					
																				for	variable_name	in	variable_names:	
																								for	key	in	keys:	
																												if	key.lower().replace(c2,'')	in	variable_name:	
																																vals	=	np.asarray(j.variables[key.lower()])		
																																if	variable_name[0]	==	'effective	longitude':	
																																				field_names_found.append('longitude')	
																																				field_values_found.append(float(vals[ind_by_eff_dist]))	
																																if	variable_name[0]	==	'effective	latitude':	
																																				field_names_found.append('latitude')	
																																				if	float(vals[ind_by_eff_dist])	>	90:	
																																								field_values_found.append(90)	
																																				else:	
																																								field_values_found.append(float(vals[ind_by_eff_dist]))	
																																if	variable_name[0]	==	'longitude':	
																																				field_names_found.append('longitude_noneff')	

GAIA-CLIM	deliverable	D5.4	
	

45	
	

																																				if	c2	==	'ref_':	
																																								field_values_found.append(float(vals))	
																																				else:	
																																								field_values_found.append(float(vals[ind_by_eff_dist]))	
																																if	variable_name[0]	==	'latitude':	
																																				field_names_found.append('latitude_noneff')	
																																				if	c2	==	'ref_':	
																																								field_values_found.append(float(vals))	
																																				else:	
																																								field_values_found.append(float(vals[ind_by_eff_dist]))	
	
	
																												else:	
																																if	key.lower().replace(c2,'')	==	'cloud_flag'	and	'cloud_flag'	not	in	field_names_found:	
																																				vals	=	np.asarray(j.variables[key.lower()])	
																																				field_names_found.append('cloud_flag')	
																																				field_values_found.append(vals[ind_by_eff_dist].tolist())	
																																				field_names_found.append('cloud_flag_comment')	
																																				field_values_found.append(str(getattr(j.variables[key],	'units')))	
	
																except:	
																				pass					
																					
								j.close()	
																	
					
	
				
																					
				#	writes	a	logfile	
				if	c	==	'single_measurement':	
								for	a	in	attrs:	
												if	a	not	in	attrs_found:	
																warnings.warning('	New	field	'	+	a	+	'	was	found	in	file	'	+	subdir_base	+	'/'	+	origFile.split('\\')[-1])	
								ind_by_eff_dist	=	''	
				return	field_values_found,	field_names_found,	field_IDs_found,	stn_name,	start_date,	start_time,	
measurement_observing_method,	ind_by_eff_dist,	cloudfree_percent,	allow_ingestion	
	
	
	
	
									
#	searches	the	fields	determined	by	iso-19115_fields.txt	and	wigos_fields.txt	in	xml	files			
def	find_fields_iso_wigos(dataformat,	root,	origFile,	logFile,	field_names,	xpaths,	field_IDs,	variable_names):	
					
				field_values_found	=	[]	
				field_names_found	=	[]	
				xpaths_found	=	[]	
				field_IDs_found	=	[]	
				nb_of_param	=	1	
				variable_attr	=	['spatial_extent_min_value',	'spatial_extent_max_value',	'measurand_domain',	
'measurand_mode_of_observation',	'measurand_subdomain',	'measurand_unit_name',	'measurand_unit_abbreviation',	
'temporal_extent',	'start_date',	'start_time',	'stop_date',	'stop_time',	'representativeness_of_observation']	
	
				if	dataformat	==	'WIGOS':	
								for	i	in	range(len(xpaths)):	
												a	=	root.findall(xpaths[i])	
												for	field	in	range(len(a)):	
																	
																try:	
																				value	=	a[field].find(field_IDs[i]).text	
																except	AttributeError:	
																				if	field_names[i]	in	variable_attr:	
																								value	=	'missing'	
																								if	field	==	0:	
																												var_values	=	[value]	
																								if	field	>	0:	
																												var_values.append(value)	
																				continue	
																	
																									

GAIA-CLIM	deliverable	D5.4	
	

46	
	

																#	if	the	xpath	is	unique										
																if	len(a)	==	1	and	value	!=	None:	
																				field_values_found.append(value)	
																				field_names_found.append(field_names[i])	
																				xpaths_found.append(xpaths[i])	
																				field_IDs_found.append(field_IDs[i])	
																					
																#	if	there	are	several	fields	with	the	same	xpath					
																if	len(a)	>	1	and	value	!=	None:	
																				if	field	==	0:	
																								var_values	=	[value]	
																				if	field	>	0:	
																								var_values.append(value)	
	
																				if	field	==	len(a)-1:	
																								field_values_found.append(var_values)	
																								field_names_found.append(field_names[i])	
																								xpaths_found.append(xpaths[i])	
																								field_IDs_found.append(field_IDs[i])	
																								nb_of_param	=	len(var_values)	
				##																				break	
																					
##				print	(field_values_found)													
				if	dataformat	==	'ISO	19115-3':	
								for	i	in	range(len(xpaths)):	
												a	=	root.findall(xpaths[i],	namespaces_ISO_19115)	
												for	field	in	range(len(a)):	
	
##																if	True:	
																try:	
																				if	'@'	not	in	field_IDs[i]	and	field_IDs[i]	!=	'codeListValue'	and	field_IDs[i]	!=	'id':	
																								value	=	a[field].find(field_IDs[i],	namespaces_ISO_19115).text	
	
																				elif	'@'	in	field_IDs[i]:	
																								field_IDs[i]	=	field_IDs[i][1:]	
																								value	=	a[field].get(field_IDs[i],	namespaces_ISO_19115)	
	
																				elif	field_IDs[i]	==	'codeListValue'	or	field_IDs[i]	==	'id':	
																								value	=	a[field].get(field_IDs[i],	namespaces_ISO_19115)	
																									
																	
																except	AttributeError:	
																				continue	
																					
																if	field_names[i]	==	'programme_network_affiliation_name':	
																				value	=	value.split('	-	')	
																				value	=	value[0].upper()	
																									
																if	field_names[i]	==	'station_platform_name':	
																				value	=	value.split(',	')	
																				value	=	value[0].split(':	')	
																				value	=	value[1].replace('-',	'	')	
																				value	=	unidecode(value).title()	
																				if	value	==	'Lindeberg':	
																								value	=	'Lindenberg'	
	
																if	field_names[i]	==	'station_altitude_asl':	
																				if	'	Alt:'	not	in	value:	
																								continue	
																				else:	
																								values	=	value.split(',')	
																								for	val	in	values:	
																												v	=	val.split(':')	
																												if	v[0]	==	'	Alt':	
																																value	=	v[1].split()	
																																value	=	value[0]	
																					
																													
																if	field_names[i]	==	'measurand_variable':	
																				value	=	value.title()	
	

GAIA-CLIM	deliverable	D5.4	
	

47	
	

																if	field_names[i]	==	'application_area'	or	field_names[i]	==	'use_constraints':	
																				value	=	split_uppercase(value)	
																							
																try:									
																				value	=	value.replace('\n','')						##	remove	newlines	
																				value	=	'	'.join(value.split())					##	remove	duplicated	spaces													
																except	AttributeError:	
																					value	=	value	
	
																value	=	if_number(value,	'float')	
																									
																#	if	the	xpath	is	unique										
																if	len(a)	==	1	and	value	!=	None:	
																				field_values_found.append(value)	
																				field_names_found.append(field_names[i])	
																				xpaths_found.append(xpaths[i])	
																				field_IDs_found.append(field_IDs[i])	
																					
																#	if	there	are	several	fields	with	the	same	xpath					
																if	len(a)	>	1	and	value	!=	None:	
																				if	i	==	10	and	field	==	0	or	i	==	11	and	field	==	1	or	i	==	22	and	field	==	0	or	i	==	30	and	field	==	0	or	i	==	31	and	field	==	0	
or	i	==	32	and	field	==	1	or	i	==	33	and	field	==	2	or	i	==	34	and	field	==	3	or	i	==	35	and	field	==	4	or	i	==	36	and	field	==	5:	
																								field_values_found.append(value)	
																								field_names_found.append(field_names[i])	
																								xpaths_found.append(xpaths[i])	
																								field_IDs_found.append(field_IDs[i])	
																								break	
												
				return	field_values_found,	field_names_found,	xpaths_found,	field_IDs_found,	nb_of_param	
					
					
	
	
	
#	finds	the	station	name	from	WIGOS	metadata	
def	find_stn_name_from_WIGOS(xml_file,	field_values_found,	field_names_found,	xpaths_found,	xml_attribs=True):	
					
				with	open(xml_file,	'rb')	as	f:									
								for	i	in	range(len(xpaths_found)):	
												if	field_names_found[i]	==	'station_platform_name':	
																stn_name	=	field_values_found[i]	
																if	','	in	stn_name:	
																				stn_name	=	stn_name.split(',')	
																				stn_name	=	stn_name[0]	
	
				return	(stn_name)	
	
	
	
	
#	converts	the	metadata	information	found	in	original	files	in	ISO-19115	and	WIGOS	format	into	a	dictionary	
def	iso_wigos_to_dict(dataformat,	coll,	xml_file,	xml_text,	field_values_found,	field_names_found,	xpaths_found,	
field_IDs_found,	nb,	xml_root,	orig_filename,	subdir_base,	xml_attribs=True):	
	
				fields_in_degrees	=	['longitude',	'latitude']	
				fields_in_meters	=	['station_altitude_asl',	'extent_minimum_value',	'extent_maximum_value']	
##				print	(field_names_found)	
##				print	(field_values_found)	
				variable_attr	=	['spatial_extent_min_value',	'spatial_extent_max_value',	'measurand_domain',	
'measurand_mode_of_observation',	'measurand_subdomain',	'measurand_unit_name',	'measurand_unit_abbreviation',	
'temporal_extent',	'start_date',	'start_time',	'stop_date',	'stop_time',	'representativeness_of_observation']	
	
					
				with	open(xml_file,	'rb')	as	f:									
								d0	=	collections.OrderedDict()	
	
								d0['metadata_origin_format']	=	dataformat	
								if	dataformat	==	'WIGOS':	
												d0['observation_data_present']	=	'True'	
												d0['metadata_CCI_CF_ID']	=	''	
												coll.create_index('metadata_CCI_CF_ID')	

GAIA-CLIM	deliverable	D5.4	
	

48	
	

												d0['measurand_variable_list']	=	''	
												d0['measurand_variables']	=	collections.OrderedDict()	
								if	dataformat	==	'ISO	19115-3':	
												try:	
																for	e	in	field_names_found:	
																				if	e	==	'station_platform_name':	
																								ind	=	field_names_found.index(e)	
																								stn_name	=	field_values_found[ind]	
																								itm_measurements	=	db.measurements.find_one({"station_platform_name":stn_name})	
																								ISO_19115_3_ID	=	itm_measurements.get('_id')	
																								d0['observation_data_present']	=	'True'	
												except	AttributeError:	
																d0['observation_data_present']	=	'False'	
	
	
								for	i	in	range(len(xpaths_found)):	
												if	dataformat	==	'WIGOS':	
																if	field_names_found[i]	==	'measurand_variable':	
																				variables	=	field_values_found[i]	
																				for	n	in	range(nb):	
																								d0['measurand_variables'][variables[n]]	=	collections.OrderedDict()	
																				continue	
																									
																if	field_names_found[i]	in	variable_attr:	
																				for	n	in	range(nb):	
																								d0['measurand_variables'][variables[n]][field_names_found[i]]	=	field_values_found[i][n]	
																				continue	
																					
												if	isinstance(field_values_found[i],	(str,	float,	int)):	
																d0[field_names_found[i]]	=	field_values_found[i]	
																value	=	field_values_found[i]	
	
												if	field_names_found[i]	in	fields_in_degrees:	
																d0[field_names_found[i]]	=	value	
																d0[field_names_found[i]	+	"_unit_name"]	=	'degree'	
												if	field_names_found[i]	in	fields_in_meters:	
																d0[field_names_found[i]]	=	value	
																d0[field_names_found[i]	+	"_unit_name"]	=	'metre'	
												if	field_names_found[i]	not	in	fields_in_degrees	and	field_names_found[i]	not	in	fields_in_meters:	
																d0[field_names_found[i]]	=	value	
							
												if	field_names_found[i]	==	'longitude':	
																longitude	=	field_values_found[i]	
																	
												if	field_names_found[i]	==	'latitude':	
																latitude	=	field_values_found[i]	
																d0['loc']	=	{'type':	'Point',	'coordinates':	[longitude,	latitude]}	
	
												if	field_names_found[i]	==	'station_platform_name':	
																stn_name	=	field_values_found[i]	
	
												if	field_names_found[i]	==	'programme_network_affiliation_name':	
																network_name	=	field_values_found[i].upper()	
	
								d0['original_filename']	=	subdir_base	+	'/'	+	orig_filename	
								d1	=	xmltodict.parse(f,	xml_attribs=xml_attribs)				#	original	xml	file	transformed	to	dictionary	
								d2	=	{}	
									
								d2['original_xml']	=	xml_text	
								dic	=	merge_two_dicts(d0,	d2)	
								dic_to_json	=	json.dumps(dic,	indent=4,	default=json_util.default)	
				coll.create_index([('loc',	pymongo.GEOSPHERE)])	
					
				return	(dic,	stn_name,	network_name)	
	
	
	
	
#	converts	the	metadata	information	found	in	original	files	in	CCI-CF	format	into	a	dictionary	
def	cci_to_dict(origFile,	dataformat,	coll,	field_values_found,	field_names_found,	field_IDs_found,	stn_name,	orig_filename,	
subdir_base,	c):	

GAIA-CLIM	deliverable	D5.4	
	

49	
	

					
				fields_in_degrees	=	['longitude',	'latitude']	
	
				d0	=	collections.OrderedDict()	
				for	i	in	range(len(field_names_found)):	
								if	i	==	0:	
												if	c	!=	'single_measurement':	
																d0['monitored_or_reference']	=	c	
																d0['collocation_IDs']	=	''	
												d0['metadata_origin_format']	=	dataformat	
												try:	
																if	c	==	'single_measurement':	
																				d0['station_platform_name']	=	stn_name	
																d0['measurand_variable_list']	=	''	
												except	(AttributeError):	
																d0[field_names_found[i]]	=	field_values_found[i]	
																	
								field_names_found[i]	=	field_names_found[i].replace('monitored_','')	
								field_names_found[i]	=	field_names_found[i].replace('reference_','')		
								field_names_found_splitted	=	field_names_found[i].split('.')	
									
									
								if	field_names_found_splitted	==	[field_names_found[i]]:	
												d0[field_names_found[i]]	=	field_values_found[i]	
								if	len(field_names_found_splitted)	==	2:	
												try:	
																d0[field_names_found_splitted[0]][field_names_found_splitted[1]]	=	field_values_found[i]	
												except	KeyError:	
																d0[field_names_found_splitted[0]]	=	collections.OrderedDict()	
																d0[field_names_found_splitted[0]][field_names_found_splitted[1]]	=	field_values_found[i]	
								if	len(field_names_found_splitted)	==	3:	
												try:	
																d0[field_names_found_splitted[0]][field_names_found_splitted[1]][field_names_found_splitted[2]]	=	
field_values_found[i]	
												except	KeyError:					
																d0[field_names_found_splitted[0]]	=	collections.OrderedDict()	
																d0[field_names_found_splitted[0]][field_names_found_splitted[1]]	=	collections.OrderedDict()	
																d0[field_names_found_splitted[0]][field_names_found_splitted[1]][field_names_found_splitted[2]]	=	
field_values_found[i]	
													
								if	field_names_found[i]	in	fields_in_degrees:	
												d0[field_names_found[i]	+	"_unit_name"]	=	'degree'	
	
								if	field_names_found[i]	==	'latitude':	
												latitude	=	field_values_found[i]	
												if	'longitude'	in	field_names_found:	
																lon_ind	=	field_names_found.index('longitude')	
																d0['loc']	=	{'type':	'Point',	'coordinates':	[field_values_found[lon_ind],	latitude]}	
													
								if	field_names_found[i]	==	'longitude':	
												longitude	=	field_values_found[i]	
	
								if	field_names_found[i]	==	'measurement_observing_method':	
												if	field_values_found[i]	==	'atms'	or	field_values_found[i]	==	'iasi':	
																if	'GRUAN'	in	origFile:	
																				d0['measurement_observing_method']	=	"processor"	
																				d0['programme_network_affiliation_name']	=	"GRUAN"	
																				d0['comment']	=	'Sounding	processed	in	the	GRUAN	processor	resulting	in	a	simulated	
{0}'.format(field_values_found[i].upper())	+	'	measurement.'	
																				d0['monitored_or_reference']	=	'reference'	
																else:	
																				d0['measurement_observing_method']	=	"NWP	model"	
																				if	field_values_found[i]	==	'atms':	
																								d0['programme_network_affiliation_name']	=	"UK	MetOffice"	
																				if	field_values_found[i]	==	'iasi':	
																								d0['programme_network_affiliation_name']	=	"ECMWF"	
																				d0['comment']	=	'GRUAN	processor	output	for	the	NWP	fields	matching	the	sounding	and	resulting	in	a	simulated	
{0}'.format(field_values_found[i].upper())	+	'	measurement.'	
																				d0['monitored_or_reference']	=	'monitored'	
	
				if	c	!=	'monitored':	

GAIA-CLIM	deliverable	D5.4	
	

50	
	

								d0['station_platform_name']	=	stn_name			
																									
				#	First,	if	latitude	and/or	longitude	fields	were	not	found	in	nc-file,	take	the	coordinates	from	ISO	metadata.	
				#	If	its	not	possible,	take	the	first	values	from	lat-lon	profiles	from	nc-file	
				if	'longitude'	not	in	field_names_found	or	'latitude'	not	in	field_names_found:	
								latitude	=	''	
								longitude	=	''	
								for	itm_ISO_19115_3	in	db.metadata_ISO_19115_3.find({"station_platform_name":stn_name}).limit(1):	
												latitude	=	itm_ISO_19115_3.get('latitude')	
												longitude	=	itm_ISO_19115_3.get('longitude')	
												d0['latitude']	=	latitude	
												d0['longitude']	=	longitude	
												d0['loc']	=	{'type':	'Point',	'coordinates':	[longitude,	latitude]}	
																	
								if	latitude	==	''	or	longitude	==	'':	
												j	=	netCDF4.Dataset(origFile,	'r')	
												keys	=	list(j.variables.keys())	
												for	key	in	keys:	
																if	key	==	'lat':	
																				latitude	=	round(float(j.variables[key][0]),	3)	
																				d0['latitude']	=	latitude	
																if	key	==	'lon':	
																				longitude	=	round(float(j.variables[key][0]),	3)	
																				d0['longitude']	=	longitude	
																				d0['loc']	=	{'type':	'Point',	'coordinates':	[longitude,	latitude]}	
	
												j.close()	
				d0['original_filename']	=	subdir_base	+	'/'	+	orig_filename	
				dic	=	d0	
				dic_to_json	=	json.dumps(dic,	indent=4)	
				coll.create_index([('loc',	pymongo.GEOSPHERE)])	
	
				return	dic	
	
	
	
##	for	structuring	documents	in	the	collocations_IDs	collection	
def	dic_cci_short(dic_cci,	dic_cci_short):	
	
				station_platform_name	=	""	
				include_fields	=	['instrument',	'product',	'NWP',	'station_platform_name',	'start_date',	'start_time',	'cloud_flag',	
'collocation_time_diff_sec',	'collocation_space_diff_km']	
				monitored_or_reference	=	dic_cci['monitored_or_reference']	
				meas_types	=	["satellite_products",	"satellite_products",	"satellite_products",	"satellite_products",	"satellite_products",	
"satellite_products",	"simulations",	"simulations",	"references",	"references",	"satellite_products",	"references"]	
				drop_down_menu	=	["EUMETSAT	IASI	Temperature	Profile",	"EUMETSAT	IASI	Humidity	Profile",	"AMSU-A	Brightness	
Temperature",	"MHS	Brightness	Temperature",	"HIRS	Brightness	Temperature",	"IASI	Radiance	Spectrum",	"UK	MetOffice",	
"ECMWF",	"GRUAN	Radiosonde/RTTOV-UKMO",	"GRUAN	Radiosonde/RTTOV-ECMWF",	"AATSR	Aerosol	Optical	Depth",	
"AERONET	Sunphotometer"]	
				instrument	=	["IASI",	"IASI",	"AMSU-A",	"MHS",	"HIRS",	"IASI",	"NWP	radiosonde	simulation",	"NWP	radiosonde	simulation",	
"Radiosonde	converted",	"Radiosonde	converted",	"AATSR",	"AERONET	Sunphotometer"]	
				product	=	["Temperature	Profile",	"Humidity	Profile",	"Brightness	Temperature",	"Brightness	Temperature",	"Brightness	
Temperature",	"Radiance	Spectrum",	"from	NWP",	"from	NWP",	"RTTOV",	"RTTOV",	"Aerosol	Optical	Depth",	"Aerosol	Optical	
Depth"]	
				NWP_model	=	["-",	"-",	"-",	"-",	"-",	"-",	"MetOffice",	"ECMWF",	"MetOffice",	"ECMWF",	"-",	"-"]	
	
				for	i	in	range(len(instrument)):	
								if	instrument[i]	in	dic_cci['instrument']:	
												if	product[i]	in	dic_cci['product']['name']:	
																try:	
																				if	NWP_model[i]	in	dic_cci['NWP']['model']:	
																								meas_type	=	meas_types[i]	
																								drop_down_choice	=	drop_down_menu[i]	
																except	(KeyError):	
																				meas_type	=	meas_types[i]	
																				drop_down_choice	=	drop_down_menu[i]	
																	
	
				for	i	in	include_fields:	
								if	i	in	dic_cci:	
												if	i	==	'instrument':	

GAIA-CLIM	deliverable	D5.4	
	

51	
	

																dic_cci_short[meas_type]	=	collections.OrderedDict()	
																dic_cci_short[meas_type][drop_down_choice]	=	collections.OrderedDict()	
																dic_cci_short[meas_type][drop_down_choice][i]	=	dic_cci[i]	
												elif	i	in	['collocation_time_diff_sec',	'collocation_space_diff_km']:	
																if	i	==	'collocation_time_diff_sec':	
																				if	'satellite'	not	in	meas_type:	
																								dic_cci_short[meas_type][drop_down_choice][i]	=	dic_cci[i]	
																if	i	==	'collocation_space_diff_km':	
																				if	'satellite'	not	in	meas_type:	
																								dic_cci_short[meas_type][drop_down_choice][i]	=	dic_cci[i]	
												elif	i	==	'product':	
																dic_cci_short[meas_type][drop_down_choice][i]	=	dic_cci['product']['name']	
												elif	i	==	'NWP':	
																dic_cci_short[meas_type][drop_down_choice]['NWP_model']	=	dic_cci['NWP']['model']											
												else:	
																if	i	==	'start_date':	
																				start_date	=	dic_cci[i]	
																if	i	==	'start_time':	
																				start_time	=	dic_cci[i]	
																if	i	==	'station_platform_name':	
																				station_platform_name	=	dic_cci[i]	
																dic_cci_short[meas_type][drop_down_choice][i]	=	dic_cci[i]	
	
				return	 meas_type,	 drop_down_choice,	 dic_cci_short,	 start_date,	 start_time,	 meas_types,	 drop_down_menu,	
station_platform_name	
	 	

GAIA-CLIM	deliverable	D5.4	
	

52	
	

measurement_conversion.py	
	
import	netCDF4	
import	collections	
import	json	
import	math	
import	os	
import	time	
import	numpy	as	np	
from	bson.objectid	import	ObjectId	
from	bson	import	json_util	
import	config	
import	logging	
	
db,	coll_wigos,	coll_iso,	coll_cci,	coll_LUTs,	coll_meas,	coll_colloc,	coll_cci_colloc,	coll_cci_colloc_IDs,	mainpath,	output_dir,	
wigos_fields_filepath,	iso_fields_filepath,	netcdf_global_attr_fields_filepath,	\	
				netcdf_variable_attr_fields_filepath,	variable_names_units_filepath,	to_be_ingested_dir,	ingested_dir,	rejected_dir	=	
config.paths()	
result	=	logging.getLogger('logfile_result')	
warnings	=	logging.getLogger('logfile_warnings')	
	
	
##	Check	if	qcinfo	and	qcflags	values	in	nc-file	are	equal	to	0	
def	check_quality_info(ds,	measurement_observing_method):	
					
				keys	=	list(ds.variables.keys())	
				qcinfo_ok	=	''	
				qcflags_ok	=	''	
				if	measurement_observing_method	!=	'atms':	
								qcinfo_ok	=	'Yes'	
								qcflags_ok	=	'Yes'	
				else:	
								for	key	in	keys:	
												if	key	==	'qcinfo':	
																vals	=	list(ds.variables[key])	
																if	vals[0]	==	0:	
																				qcinfo_ok	=	'Yes'	
												if	key	==	'qcflags':	
																vals	=	list(ds.variables[key])				
																if	vals[0]	==	0:	
																				qcflags_ok	=	'Yes'	
	
				return	keys,	qcinfo_ok,	qcflags_ok	
	
	
	
def	unit_field(d0,	ds,	key,	units,	units_multiply,	unit,	variable_index,	variable_name,	multiply_factor,	origFile,	mainpath,	c,	
subdir_base):	
				if	unit	==	None:	
								warnings.warning('	Unit	missing	in	file	'	+	subdir_base	+	'/'	+	origFile.split('\\')[-1]	+	'	for	variable	"'	+		d0['measurand_variable']	
+	'"')	
				if	unit	!=	'	'	and	unit[-1]	==	'	':	
								unit	=	unit[:-1]	
				if	unit	not	in	units[variable_index]	and	unit	not	in	units_multiply[variable_index]:	
								if	key.lower()	!=	'time'	and	key.lower()	!=	c+'time':	
##												print	(key.lower())	
												warnings.warning('	New	unit	"'	+	unit	+	'"	found	in	file	'	+	subdir_base	+	'/'	+	origFile.split('\\')[-1]	+	'	for	variable	"'	+		
d0['measurand_variable']	+	'"')	
								d0['units']	=	unit	
				if	unit	not	in	units[variable_index]	and	unit	in	units_multiply[variable_index]:	
								multiply_factor	=	float(units_multiply[variable_index][-1].strip('multiply='))	
								d0['units']	=	units[variable_index][0]	
				if	unit	in	units[variable_index]:	
								d0['units']	=	units[variable_index][0]	
					
				return	d0,	multiply_factor	
	
	
	
																																					

GAIA-CLIM	deliverable	D5.4	
	

53	
	

def	meas_nc_to_dict(origFile,	coll_meas,	mainpath,	variable_names,	WIGOS_ID,	CCI_CF_ID,	stn_name,	start_date,	start_time,	
measurement_observing_method,	field_names,	field_IDs,	units,	units_multiply,	c,	ind_by_eff_dist,	subdir_base):	
	
				logFile_measurements	=	mainpath	+	'logfile_measurements_to_db.txt'	
				logFile_measurements_var_attr	=	mainpath	+	'logfile_measurements_var_attr_to_db.txt'	
	
				ds	=	netCDF4.Dataset(origFile,	'r')	
				f	=	origFile.split('\\')	
				measurand_variables	=	[]	
				dics	=	[]	
	
				if	c	==	'reference':	
								c	=	'ref_'	
								except_param	=	'mon_'	
				if	c	==	'monitored':	
								c	=	'mon_'	
								except_param	=	'ref_'	
				if	c	==	'single_measurement':	
								c	=	'single_'	
								except_param	=	'nothing_to_except'	
	
				y_axis_dims	=	['time',	'altitude',	'geopotential	altitude',	'air	pressure',	'channel',	'length',	'levels',	'num_obs',	'nMonCollocations',	
'nRefCollocations']	
				x_axis_variables	=	[]	
				y_axis_variables	=	[]	
					
	
				keys,	qcinfo_ok,	qcflags_ok	=	check_quality_info(ds,	measurement_observing_method)	
					
				if	qcinfo_ok	==	'Yes'	and	qcflags_ok	==	'Yes':				
								for	key	in	keys:	
	
												var_shape	=	ds.variables[key].shape	
												if	var_shape	==	():					##	if	variable	is	dimensionless	
																vals	=	[float(ds.variables[key].getValue())]	
												key_found	=	False	
	
												for	variable_name	in	variable_names:	
																if	key.lower()	in	variable_name	or	key.lower().replace(c,'')	in	variable_name:	
																				variable_index	=	variable_names.index(variable_name)	
																				multiply_factor	=	False	
																				key_found	=	True	
																				can_be_ingested	=	False	
																				if	var_shape	!=	():	
																								vals	=	np.asarray(ds.variables[key])	
																								vals	=	vals.tolist()	
																								if	c	!=	'single_':	
																												if	key.lower()	in	['distance','time_diff','cos_ratio']	or	'mon_'	in	key.lower():	
																																vals	=	[vals[ind_by_eff_dist]]																												
	
																				d0	=	collections.OrderedDict()	
																				d0['measurand_variable']	=	variable_name[0].capitalize()	
																					
																				if	WIGOS_ID	!=	'':	
																								d0['metadata_WIGOS_ID']	=	ObjectId(WIGOS_ID)	
																								coll_meas.create_index('metadata_WIGOS_ID')	
																									
																				d0['metadata_CCI_CF_ID']	=	ObjectId(CCI_CF_ID)	
																				coll_meas.create_index('metadata_CCI_CF_ID')	
																				if	c	==	'single_measurement':	
																								d0['station_platform_name']	=	stn_name	
																				d0['start_date']	=	start_date				
																				d0['start_time']	=	start_time	
	
																				dims	=	[]	
																				for	dim	in	ds.variables[key].dimensions:	
																								dim_found	=	''	
																								for	v	in	variable_names:	
																												if	dim.lower()	in	v:	
																																dims.append(str(v[0].capitalize()))	
																																dim_found	=	'Yes'	

GAIA-CLIM	deliverable	D5.4	
	

54	
	

																								if	dim_found	==	'':	
																												dims.append(dim)	
																				d0['dimensions']	=	dims	
	
																				dims_lower	=	[x.lower()	for	x	in	dims]	
																				for	dim	in	y_axis_dims:	
																								if	dim	in	dims_lower	and	variable_name[0]	not	in	y_axis_dims:	
																												d0['y_axis_variables']	=	[]	
																									
																								if	dim	==	variable_name[0]:	
																												d0['x_axis_variables']	=	[]	
																					
																																																					
																				d0['name']	=	key	
																					
																				for	attr	in	ds.variables[key].ncattrs():	
																								attr_name	=	''	
																								for	elem	in	range(len(field_IDs)):	
																												for	nc_path	in	field_IDs[elem]:	
																																if	nc_path	==	attr:	
																																				attr_name	=	field_names[elem]	
																								if	attr_name	!=	'':	
																												if	attr_name	==	'fill_value':	
																																d0[attr_name]	=	float(getattr(ds.variables[key],	attr))	
																																fill_value_default.append(float(getattr(ds.variables[key],	attr)))	
	
																												if	attr_name	==	'units':	
																																unit	=	str(getattr(ds.variables[key],	attr))	
																																d0,	multiply_factor	=	unit_field(d0,	ds,	key,	units,	units_multiply,	unit,	variable_index,	variable_name,	
multiply_factor,	origFile,	mainpath,	c,	subdir_base)	
																																	
																												else:	
																																d0[attr_name]	=	str(getattr(ds.variables[key],	attr))	
																								else:	
																												warnings.warning('	New	variable	attribute	'	+	attr	+	'	found	in	file	'	+	subdir_base	+	'/'	+	origFile.split('\\')[-1])	
	
																				if	'units'	not	in	ds.variables[key].ncattrs():	
																								if	measurement_observing_method	in	['atms','iasi']:	
																												unit	=	rttov_keys_units.get(key)	
																												d0,	multiply_factor	=	unit_field(d0,	ds,	key,	units,	units_multiply,	unit,	variable_index,	variable_name,	
multiply_factor,	origFile,	mainpath,	c,	subdir_base)	
	
	
																				if	isinstance(vals[0],	list):	
																								for	u	in	vals:	
																												for	n,i	in	enumerate(u):	
																																if	i	in	fill_value_default	or	math.isnan(float(i))	==	True:	
																																				u[n]=	-999999	
																																else:	
																																				if	variable_name[0].capitalize()	==	'Air	temperature':	
																																								if	200	<	u[n]	<	340:	
																																												can_be_ingested	=	True	
																																				else:	
																																								can_be_ingested	=	True	
																																								if	multiply_factor	is	not	False:	
																																												u[n]=	u[n]*multiply_factor	
	
																				if	isinstance(vals[0],	(int,	float,	str)):	
																								for	n,i	in	enumerate(vals):																											
																												if	i	in	fill_value_default	or	math.isnan(float(i))	==	True:	
																																vals[n]=	-999999	
																												else:	
																																if	variable_name[0].capitalize()	==	'Air	temperature':	
																																				if	200	<	vals[n]	<	340:	
																																								can_be_ingested	=	True	
																																else:	
																																				can_be_ingested	=	True	
																																				if	multiply_factor	is	not	False:	
																																								vals[n]=	vals[n]*multiply_factor	
	
																													

GAIA-CLIM	deliverable	D5.4	
	

55	
	

																				d0['values']	=	vals	
																				dic	=	d0		
																				dic_to_json	=	json.dumps(dic,	indent=4,	default=json_util.default)	
																					
																				if	can_be_ingested	is	True:	
																								if	c	!=	'single_':	
																												if	except_param	not	in	str(getattr(ds.variables[key],	'long_name')):	
																																dics.append(dic)	
																																measurand_variables.append(variable_name[0].capitalize())	
																																for	dim	in	y_axis_dims:	
																																				if	dim	in	dims_lower:	
																																								if	variable_name[0].capitalize()	not	in	x_axis_variables	and	variable_name[0]	not	in	y_axis_dims:	
																																												x_axis_variables.append(variable_name[0].capitalize())	
	
																																				if	dim	==	variable_name[0]:	
																																								if	variable_name[0].capitalize()	not	in	y_axis_variables:	
																																												y_axis_variables.append(variable_name[0].capitalize())	
																								else:	
																												dics.append(dic)	
																												measurand_variables.append(variable_name[0].capitalize())	
	
																												for	dim	in	y_axis_dims:	
																																if	dim	in	dims_lower:	
																																				if	variable_name[0].capitalize()	not	in	x_axis_variables	and	variable_name[0]	not	in	y_axis_dims:	
																																								x_axis_variables.append(variable_name[0].capitalize())	
																																									
	
																																if	dim	==	variable_name[0]:	
																																				if	variable_name[0].capitalize()	not	in	y_axis_variables:	
																																								y_axis_variables.append(variable_name[0].capitalize())	
																																									
																																													
	
																				if	can_be_ingested	is	False	and	d0['measurand_variable']	!=	'Solar	zenith	angle':	
																								warnings.warning('	Parameter	"'	+	d0['measurand_variable']	+	'"	found	in	'	+	subdir_base	+	'/'	+	origFile.split('\\')[-1]	
+'	was	not	ingested	due	to	quality	issues')	
	
																					
												if	key_found	is	False	and	except_param	not	in	key	and	key	not	in	['eff_distance',	'mon_cloud_flag']:	
																warnings.warning('	New	parameter	'	+	key	+	'	found	in	'	+	subdir_base	+	'/'	+	origFile.split('\\')[-1])	
																																							
								for	dictionary1	in	dics:	
												x_axis_variables_copy	=	x_axis_variables[:]	
												y_axis_variables_copy	=	y_axis_variables[:]	
	
												for	key,	value	in	dictionary1.items():	
																if	key	==	'measurand_variable':	
																				if	value	in	x_axis_variables_copy:	
																								if	'Channel'	in	dictionary1['dimensions']:	
																												dictionary1['y_axis_variables']	=	['Channel']	
																								else:	
																												dictionary1['y_axis_variables']	=	y_axis_variables_copy	
																				if	value	in	y_axis_variables_copy:	
																								for	dic2	in	dics:	
																												for	key2,	value2	in	dic2.items():	
																																if	'Channel'	in	dic2['dimensions']	and	dic2['measurand_variable']	in	x_axis_variables_copy:	
																																				x_axis_variables_copy.remove(dic2['measurand_variable'])	
																								dictionary1['x_axis_variables']	=	x_axis_variables_copy																								
					
				else:	
								db.metadata_CCI_CF.remove({'_id':	ObjectId(CCI_CF_ID)})	
								result.warning('	Data	derived	from	'	+	subdir_base	+	'/'	+	origFile.split('\\')[-1]	+	'	was	not	ingested	due	to	quality	issues')	
								warnings.warning('	Data	derived	from	'	+	subdir_base	+	'/'	+	origFile.split('\\')[-1]	+	'	was	not	ingested	due	to	quality	issues')	
								measurand_variables	=	[]	
				ds.close()	
					
				return	dics,	measurand_variables	

GAIA-CLIM	deliverable	D5.4	
	

56	
	

LUTs_conversion.py	

	
import	collections	
import	json	
import	numpy	as	np	
from	bson	import	json_util	
import	h5py	
import	config	
	
db,	coll_wigos,	coll_iso,	coll_cci,	coll_LUTs,	coll_meas,	coll_colloc,	coll_cci_colloc,	coll_cci_colloc_IDs,	mainpath,	output_dir,	
wigos_fields_filepath,	iso_fields_filepath,	netcdf_global_attr_fields_filepath,	\	
				netcdf_variable_attr_fields_filepath,	variable_names_units_filepath,	to_be_ingested_dir,	ingested_dir,	rejected_dir	=	
config.paths()	
	
	
	
def	LUTs_to_dict(f,	origFile,	coll_LUTs,	mainpath):	
	
				logFile_LUTs	=	mainpath	+	'logfile_LUTs_to_db.txt'	
				measurand_variables	=	[]	
				dics	=	[]	
	
				with	h5py.File(origFile,	"r")	as	hf:	
								keys	=	list(hf.keys())	
								for	key	in	keys:	
												data	=	hf.get(key)	
													
												if	key	==	'colocUncertainty':	
																i_start	=	0	
																for	i	in	range(120,	480,	120):	
																				np_data	=	np.array(data[i_start:i])	
																				p	=	('Shape	of	the	array	'	+	key	+	':	\n',	np_data.shape)	
																				vals	=	np_data.tolist()	
	
																				d0	=	collections.OrderedDict()	
	
																				d0['LUT_name']	=	f[:-3]	
																				d0['variable_name']	=	key	
																				d0['longitude_range']	=	[i_start-180,	i-180]	
																				units	=	data.attrs['Units'].decode()	
																				d0['units']	=	units	
																				try:	
																								dims	=	data.attrs['Dimensions'].decode()	
																								d0['dimensions']	=	dims	
																				except	KeyError:	
																								u	=	0	
																				d0['values']	=	vals	
																				dic	=	d0		
																				dic_to_json	=	json.dumps(dic,	indent=4,	default=json_util.default)	
																				dics.append(dic)	
																				i_start	=	i	
																																																					
	
	
												else:					
																np_data	=	np.array(data)	
																p	=	('Shape	of	the	array	'	+	key	+	':	\n',	np_data.shape)	
																vals	=	np_data.tolist()	
	
																d0	=	collections.OrderedDict()	
																d0['LUT_name']	=	f[:-3]	
																d0['variable_name']	=	key	
																try:	
																				units	=	data.attrs['Units'].decode()	
																				d0['units']	=	units	
																except	KeyError:	
																				u=0	
																try:	
																				dims	=	data.attrs['Dimensions'].decode()	

GAIA-CLIM	deliverable	D5.4	
	

57	
	

																				d0['dimensions']	=	dims	
																except	KeyError:	
																				u=0	
																d0['values']	=	vals	
																dic	=	d0		
																dic_to_json	=	json.dumps(dic,	indent=4,	default=json_util.default)	
																dics.append(dic)	
	
				return	dics	

	

