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1. Introduction 
 

The aim of Work Package 4 (WP4) of the GAIA-CLIM project was to assess and develop the capability 

of global Numerical Weather Prediction (NWP) systems to contribute to the validation of new 

satellite observations. Work Package 4 focussed on microwave radiance observations from satellites 

and the scope was limited to observations with primary sensitivities to atmospheric temperature 

and humidity. It has been shown, as part of WP4, that global NWP systems are able to identify and 

characterise a range of biases in satellite-radiance measurements. This has been illustrated though 

an assessment and analysis of data quality from a range of satellite sensors, including those from 

Chinese, Japanese, Russian and US satellite agencies. Furthermore, WP4 has shown how reference 

quality measurements from the Global Climate Observing System (GCOS) Reference Upper Air 

Network (GRUAN, Dirksen et al, 2014) can be used to sample and characterise biases in NWP models 

themselves and thereby help define the uncertainty characteristics of the models. The aim of this 

report is to assess to what extent the methods developed in WP4 generalise to a wider set of 

Essential Climate Variables (ECVs). This report forms Deliverable D4.7 for the GAIA-CLIM project. 

In considering the generalisation of the approach to a wider set of ECVs it is worthwhile noting the 

key features of NWP systems and supporting systems that enable them to be exploited effectively 

for satellite validation: 

• A comprehensive observing system. Current NWP systems make use of a diverse range of 

observations, including conventional in-situ measurements at the surface and the upper 

atmosphere, as well as from a constellation of satellites operating in geostationary and low Earth 

orbits. The capabilities of this observing system, in terms of spatial coverage, temporal 

continuity and accuracy, have been improving steadily since 1979. This has resulted in a degree 

of spatial homogeneity in the quality of the model fields, at least for some parts of the 

atmosphere. Plans are well developed to continue the coverage provided by key datasets 

(satellite radiances, for example) for the next three decades and beyond. There is, therefore, a 

high likelihood that the capabilities for satellite validation provided by NWP systems will be 

sustained for the longer term.   

 

• Sophisticated data assimilation systems. Data assimilation systems are designed to provide 

accurate analyses that serve as initial conditions for NWP forecast model runs. In atmospheric 

reanalysis mode (Dee et al, 2011, 2014) the same systems are used to generate consistent 

analyses of the global atmospheric state over decadal timescales. In NWP, such systems have 

evolved as a result of concerted and sustained research and development effort since the 1980s. 

These systems aim to optimally blend new observational information from the observing 

network with prior information on the global atmospheric state, normally in the form of a short-

range forecast from a previous analysis. The relative influence of the observational information 

and the prior information is determined by the error characteristics of both. In current state-of-

the-art systems, the use of a forecast model to consistently interpret observational information 

throughout the analysis window (typically 6-12 hours long) ensures the resulting analyses are 

physically balanced.  

 

• The development of reference observation networks. In recent years, the importance of 

establishing networks of high quality reference measurements has been recognised. These 

reference observations are characterised by an aim to achieve the highest possible accuracies, 

enabled though establishing metrological traceability to recognised measurement standards. 
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The GRUAN network was established to provide high-quality observations to support climate 

trend analyses (Seidel et al, 2009), to calibrate and validate data from more spatially 

comprehensive observing networks (including satellite data), as well as to support process 

studies. In the approach developed in WP4, the role of these reference observations is to 

sample, and characterise, the error characteristics of the global NWP models, in terms of both 

temperature and humidity, but also their top-of-atmosphere brightness temperature 

equivalents. 

 

The particular strengths of the global (NWP) analysis-based approach to satellite validation can be 

summarised as: 

High sensitivity. As the NWP system makes near-optimal use of the comprehensive observational 

information available, the resulting model equivalents of new observations can be used to identify 

and characterise biases in satellite observations with high sensitivity. Based on experience gained as 

part of GAIA-CLIM, these can be estimated to be: around 0.1K for tropospheric temperature 

sounding channels; 1.0K for humidity sounding channels; and 2-5K for surface sensitive channels. 

Global coverage. The global NWP models provides complete global spatial coverage, at spatial 

resolutions of 10 - 50km. This has proven to be particularly valuable in characterising biases which 

are exhibited over short spatial scales or exhibit complex spatial structure over large areas, and in 

elucidating the mechanisms causing these biases. 

Continuous temporal coverage. The NWP systems run continuously and therefore provide unbroken 

time series of statistics on aspects of satellite performance. This has proven to be very valuable in 

identifying transient biases in satellite data and in identifying the precise time of sudden changes in 

satellite-data quality.   

One area of weakness in the NWP approach is the ability to determine the absolute biases in 

satellite observations. This has been tackled in GAIA-CLIM WP4 through the use of the GRUAN 

reference observations.  

This report aims to assess, for a wider set of ECVs than those examined in WP4, which of the building 

blocks are in place to allow global analysis systems to be used effectively for the validation of new 

satellite observations, and what are the future prospects. The scope of the assessment has been 

limited to ECVs which are covered within the EU’s Copernicus services, specifically: 

• The Climate Change Service (C3S); 

• The Atmospheric Monitoring Service (CAMS); and  

• The Marine Environmental Monitoring Service (CMEMS). 

So the ECVs addressed are: 

• Sea Surface Temperature (SST) 

• Sea Surface Height (SSH) 

• Sea Ice (SI) 

• Soil Moisture (SM)  

• Atmospheric Composition 

The report begins with a review of the status for the ECVs addressed in WP4 (Section 2), followed by 

reviews of SST, SSH, SI, SM and Atmospheric Composition in Sections 3-7, respectively. 
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2. Temperature and Humidity  
 

Background 

 

Atmospheric temperature and humidity are fundamental state variables influencing the evolution of 

the atmosphere on timescales ranging from minutes to centuries. Accurate estimates of these 

variables are critical in providing the initial conditions for NWP models that form the basis of 

operational weather forecasts. On longer timescales, the accurate estimation of temperature and 

humidity has been used to determine trends associated with climate change, from solely 

observational datasets (McCarthy et al, 2009 , Sherwood et al, 2008) as well as from atmospheric 

reanalyses (Dessler et al, 2010, Simmons et al, 2014) . 

Climate Data Records (CDRs) have typically taken the form of direct measurements of atmospheric 

temperature and humidity, for example from radiosonde measurements (Haimberger et al, 2014). 

More recently, increasing use has been made of estimates from atmospheric reanalyses. These 

atmospheric reanalyses make use of state-of-the-art NWP systems to provide consistent analyses of 

the global atmospheric state over many decades. They assimilate observations from the global 

observing system, often including higher quality reprocessed observational datasets than are 

available in near-real-time. These reanalyses attempt to combine the diverse range of observations 

available in an optimal way, given the uncertainty characteristics of the observations and the 

uncertainty characteristics of the forecast model, which is used to propagate the observational 

information forward in time from one analysis cycle to the next. Passive satellite observations in the 

microwave (MW) and infrared (IR) regions of the spectrum are of particular importance in analysing 

atmospheric temperature and humidity, although other observations (notably those from 

radiosondes and GNSS-RO) also play an important role. These radiance observations are assimilated 

directly, normally as top-of-atmosphere level 1 brightness temperatures. In recent years, much 

effort has been focussed on the development of Fundamental Climate Data Records (FCDRs) – Level 

1 datasets of the highest quality achievable (Fennig et al, 2013). 

The global observing system providing information on temperature and humidity has evolved 

considerably since the beginning of the modern meteorological satellite era (1979 onwards). Today, 

the constellation of satellites providing temperature and/or humidity information includes 

instruments operated by agencies in the US, Europe, Japan, China, India, Korea and Russia. 

Currently, global NWP centres will typically assimilate observations from 10-20 MW and IR 

instruments. In reanalysis, a similar set of observations will be assimilated. The prospects for the 

continuation of this comprehensive constellation are good, with firm plans in place by major 

agencies in the US, Europe and China to continue to populate and operate the constellation in its 

current form until around 2040. The continuation of these data records can present challenges 

though. As new technologies are developed, to reduce costs, size, mass and volume, whilst 

maintaining or improving radiometric performance, new bias characteristics are often evident in the 

data. This can present a challenge to meet the ever more stringent requirements of modern NWP 

systems and for the longer term development of FCDRs. As described below, the use of global NWP 

systems as part of the validation process for new satellites is now established. Analogously, the use 

of atmospheric reanalyses in assessing the quality of reprocessed satellite datasets is becoming more 

widespread. 
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Current approaches to validation 

 

The technique of simultaneous nadir overpasses (SNO) has been widely used to assess inter-satellite 

biases in the development of FCDRs. SNO exploits the occasional spatio-temporal coincidence of sun 

synchronous polar orbiting satellites to quantify and correct inter-satellite biases. These 

coincidences generally occur in the polar regions, but for satellites in non-sun-synchronous orbits 

these coincidences take place at lower latitudes (the extended SNO technique – or SNO-x). As an 

example, Zou and Wang (2011) have used the technique to study inter-satellite biases in MSU and 

AMSU-A instruments. Using spatio-temporal colocation criteria of 65 km and 50 seconds, they found 

SNOs typically occur every 7-10 days. Zou and Wang invoke a number of parameters to model the 

diagnosed biases - including a global radiance offset, radiometer non-linearity and spectral shifts in 

the pass bands of channels. Estimated inter-satellite biases are significantly reduced using the 

technique. 

 

Potential weaknesses of the technique are related to the limited geographical location of the SNO 

colocations, and the associated limited dynamic range of atmospheric and surface states sampled by 

SNO. In practice, however, this is not a serious issue for temperature sounding channels as the 

seasonal variation of atmospheric temperatures at polar latitudes samples most of the global range 

of temperatures for sounding channels. For humidity sounding channels, the sampling of solely drier 

atmospheric profiles at high latitudes is a more significant issue. The technique also makes an 

implicit assumption that the weighting functions for nominally identical channels are matched (with 

concomitant introduction of uncertainty if this assumption is violated). The technique has been 

effective in achieving improved inter-instrument homogeneity and has been used to identify long-

term drifts in some satellite instruments (e.g. NOAA-16 AMSU-A). 

 

Aircraft underflights have been used successfully in satellite validation campaigns. Aircraft provide 

mobile observation platforms to obtain measurements co-located with satellite observations. For 

the characterisation of satellite-radiance measurements, aircraft provide two means of validation: 

 

• Direct comparisons of radiometric measurements made by airborne radiometers and satellite 

instruments. For window channels that are only weakly affected by atmospheric conditions, this 

offers a direct quantification of the differences between airborne and satellite observations. For 

example, during the JAIVEx campaign (Larar et al, 2010), it was shown that differences between 

IASI and an aircraft radiometer were around 0.1K in the 11 µm window region.   

 

• Provision of co-located ‘ground truth’ observations in the form of dropsonde temperature and 

humidity profiles coupled with radiometric measurements of surface skin temperature. Above 

the aircraft flight altitude, atmospheric state can be obtained from NWP models. A radiative-

transfer model is then used to map the measured atmospheric state to observation space and 

compared with the coincident satellite measurement. 

 

In the former approach, this method can be developed further by using traceably calibrated aircraft 

radiometers to establish the absolute radiometric uncertainties in the aircraft radiometer and hence 

infer the absolute uncertainties in the satellite instrument. Tobin et al. (2013) have developed this 

concept and employed traceably calibrated airborne radiometers in the validation of observations 

from the Suomi-NPP CrIS radiometer. Absolute radiometric uncertainties are estimated to be 0.3K 

for the long wavelength channels of CrIS. This method is unique in enabling a determination of the 
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absolute uncertainties in the satellite-radiance measurements, at least at the location of the 

colocation. A drawback of aircraft validation campaigns is that the geographical coverage of the 

colocations tends to be limited, and hence the scope to characterise complex, state dependent 

biases or orbital biases is limited.  

 

Ground-based observations have formed part of satellite Cal/Val campaigns in recent years (Calbet 

et al, 2011). This aspect of Cal/Val is typically focussed on the validation of level 2 products although 

some of these campaigns have directly addressed the issues of bias and uncertainties in the level 1 

radiance data from satellite instruments. The GRUAN network (Immler et al, 2010) aims to make 

high-quality measurements of atmospheric state at a number of sites globally. Establishing 

metrological traceability is a key aim of the network and this should ensure that absolute 

uncertainties can be determined for the observations made at GRUAN sites and, in turn, satellite 

observations validated through comparisons with the GRUAN measurements. 

 

Several other, non-NWP, techniques are used in the validation of satellite sounding measurements. 

Satellite manoeuvres on-orbit, in which the spacecraft is rotated so that radiometers can directly 

view cold space, are used to assess biases due to instrument self-emission. For microwave imagers, 

views of radiometrically homogeneous and stable scenes, such as the radiometrically cold ocean 

surface, or rainforest scenes, have been used to assess the long-term stability of microwave 

instruments (Ruf, 2000).  

 

Increasingly over the last decade though, NWP-based methods of characterising and validating new 

satellite temperature and humidity sounders have come to be seen as a very powerful tool. The 

value of using NWP models in characterising satellite observations stems from the high accuracy of 

current global NWP models. As indicated in the introductory section, this high accuracy results from 

a number of factors, including: the diverse range of high-quality observations used in the analysis; 

the efficiency of current data assimilation schemes is extracting information from the observations 

in a consistent way; and finally the high quality of current forecast models in propagating 

observation information between analysis cycles. For tropospheric temperature sounding channels, 

background errors (in observation space) are estimated to be in the range 50-100mK. For humidity 

sounding channels, the value is in the range 1-2K. As a consequence, computed first guess brightness 

temperatures are a good proxy for ‘truth’ in characterising new instruments. Two early examples of 

this approach, for SSMIS and FY-3A MWTS are given below. 

 

The Special Sensor Microwave Imager/Sounder (SSMI/S, or SSMIS, Kunkee et al, 2008) followed the 

Special Sensor Microwave Imager (SSMI) series of instruments, which formed part of the US Defence 

Meteorological Satellite Program (DMSP) payload, successfully flown since 1987 (Colton and Poe, 

1999). The first SSMIS instrument, on-board the DMSP F-16 satellite, was launched in October 2003. 

During the early phases of the Cal/Val campaign, SSMIS measured brightness temperatures were 

compared with simulations from NWP fields (both ECMWF and Met Office (Bell et al, 2008) ). An 

analysis of first guess departure time-series revealed that two significant biases were evident in the 

SSMIS temperature sounding channels: gain anomalies caused by solar radiation impinging on the 

surface of the warm calibration load causing depressions of ~1K in the measured brightness 

temperatures, and; orbital biases caused by thermal emission from the main (emissive) reflector, 

which experienced temperature variations of 80K during an orbit, resulting in brightness 

temperature errors of ~1K. In a conventional microwave imager instrument without temperature 

sounding channels, these effects are much more difficult to detect. Nevertheless, it has been shown 
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subsequently that imager missions have suffered similar biases due to emissive reflectors. Geer et al 

(2010), showed that TMI suffered similar biases due to reflector emission. 

 

The first of China’s latest series of polar orbiting meteorological satellites, FY3-A, was launched in 

May 2008 (Dong et al, 2009). The satellite carried several instruments of interest for NWP and 

reanalysis applications, including the Microwave Temperature Sounder (MWTS). MWTS is a cross 

track scanning four channel microwave sounder, with channels centred at 50.3, 53.596, 54.94 and 

57.29 GHz. These are equivalent to AMSU-A channels 3, 5, 7 and 9. An NWP-based analysis showed 

that the variance of the first guess departures (observation minus model equivalents) could be 

substantially reduced by assuming significant frequency shifts for the MWTS channel centre 

frequencies. The shifts were in the range 30-55 MHz depending on channel. Radiometer non-

linearities were also found to play a role in the biases evident for MWTS. Having corrected for these 

two effects, the MWTS data quality was significantly improved (Lu et al, 2011a ) and proved 

beneficial when assimilated in the ECMWF forecasting system (Lu et al, 2011b). The approach was 

applied to data from MSU and AMSU-A microwave sounders, which showed strong evidence of 

passband shifts and drifts (Lu and Bell, 2013). 

 

NWP-based analyses have also been carried out on the Suomi-NPP ATMS instrument (Bormann et al, 

2013, Doherty et al, 2015). As part of WP4 detailed assessments of AMSR2, FY-3C MWHS-2/MWRI, 

Meteor M-N2 MTVZA-GY and GMI have been carried out and reports on these assessments have 

formed deliverables 4.2, 4.5 and 4.6. 

 

Global analysis systems 

 

Data assimilation systems are an integral component of operational NWP and have, consequently, 

benefitted from concerted research and development efforts over many decades at national and 

international meteorological centres. Temperature and humidity (or variables closely related to 

these) are explicitly analysed within these systems and provide the initial conditions for forecast 

model integrations. Currently, state-of-the-art global NWP models run at horizontal (grid-) 

resolutions of around 10km and employ data assimilation systems based on 4D-Var (Courtier et al, 

1994, Rawlins et al, 2007). These systems typically assimilate observations from a diverse array of 

conventional and satellite observations, which, collectively, provide near-global coverage for most 

parts of the atmosphere in each assimilation cycle (of 6-12 hours typically). Ensembles of forecasts 

are commonly used to provide estimates of flow dependent uncertainties in the background fields 

used as prior constraints in variational assimilation schemes (Isaksen et al, 2010) . 

 

The same, or very similar, NWP models are run at several centres in reanalysis mode, and in recent 

years new versions of these reanalyses are produced at 5-10 year intervals, in order to benefit from 

advances in NWP modelling, the availability of more powerful supercomputers (permitting 

reanalyses to be run at higher resolution using larger ensembles), as well as the availability of higher 

quality reprocessed datasets.  

 

In WP4 of GAIA-CLIM, it was shown how NWP systems could be used to characterise and validate 

level 1 observations from new satellites. Model equivalents of measured satellite radiances, based 

on short-range forecasts (T+6 or T+12 hours), are able to characterise uncertainties in tropospheric 

temperature sounding channels at a level of 0.1 - 0.2K. For humidity sounding channels, the figure is 
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around 1K, and for microwave channels, which are sensitive to the surface, the figure is 2-5K (limited 

by uncertainties in the radiative-transfer modelling of ocean surface emission).  

 

Future evolution of global analysis systems 

 

It can be expected that global analysis and forecasting systems will continue to advance steadily. A 

realistic expectation is that global models will run at around 5km (grid-) resolution by 2030, and that 

ensembles of forecasts and data assimilations will play an ever greater role in improving the 

estimation of uncertainties in model fields. The representation of moist processes in particular is 

expected to benefit significantly as a result of these developments. It is noteworthy that, as 

demonstrated in WP4, the misfit of short-range forecasts to humidity sensitive radiances (in clear 

sky conditions) in the Met Office global NWP model has improved significantly in the last decade: 

reducing from 2K in 2007, to 1K in 2017. This is partly a result of model improvements (including 

resolution upgrades and improvements to both data assimilation and forecast models) and partly as 

a result of the increased number of humidity observations constraining the analysis. Consequently it 

can be expected the value of using NWP-based approaches to the validation of new satellite 

sounding data for temperature and humidity data will continue to increase.  

 

WP4 identified (and documented in the Gap Assessment and Impacts Document, GAID1) the need 

for improved modelling of radiative transfer at the (land and ocean) surface to improve the utility of 

NWP systems for the validation of surface sensitive satellite radiance measurements. This is a 

specific example of the general need for ongoing work to improve the observation operators linking 

model variables with observed quantities. The need for improved understanding of the spectroscopy 

in key regions of the microwave spectrum, such as at 183 GHz (Brogniez et al, 2016) and at 50-60 

GHz, is another example captured in the GAIA-CLIM GAID. 

 

In the context of the validation of historic data as part of the reprocessing of satellite datasets, the 

role of using atmospheric reanalyses as a tool for the evaluation of data quality (Kobayashi et al, 

2017) is likely to increase.  

 

Reference observation networks 

 

Several of the observation types which are actively assimilated in global NWP systems, and in 

atmospheric reanalyses, could be considered to be of reference or near-reference quality. For 

example, GNSS-Radio Occultation observations (Healy, 2008), assimilated as bending angles, are 

derived from phase-delay (time) measurements, which have a short and direct traceability chain to 

the SI and consequently exhibit low bias characteristics. GNSS-RO measurements provide important 

information on temperature and humidity from the mid-troposphere to the mid-stratosphere. In 

addition, recent validation campaigns have shown the radiometric uncertainties of radiance 

measurements from the infrared interferometric radiometers IASI (MetOp-A and MetOp-B) and CrIS 

(Suomi NPP), which provide temperature and humidity information for NWP and reanalyses, have 

radiometric uncertainties of less than 0.3K. The variational bias corrections applied to these 

observations in NWP systems are typically less than 0.2K, implying the assimilation system is making 

adjustments to the uncorrected brightness temperatures that are consistent with the uncertainties 

                                                           
1
 http://www.gaia-clim.eu/page/gaid  
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in these observations. In summary – the high quality of many of the observation types assimilated in 

modern NWP systems (and reanalyses) have ensured the analysed fields are themselves of high 

quality. 

Nevertheless, reference observations are normally considered to be independent datasets that can 

be used to assess the quality of other measurements or analyses. This has been an aim of the 

GRUAN network which currently comprises a global network of 22 sites (at 2016) worldwide with 

the aim of providing high-quality observations of variables, including atmospheric temperature and 

humidity. A key component of the network is high quality radiosonde observations. Dirksen et al 

(2014) have shown that the GRUAN (version 2) uncertainties in temperature range from 0.15K 

(night-time mid-troposphere) to 0.6K (daytime at 30km), whilst uncertainties for relative humidity 

are 6%. It is expected that the GRUAN network will continue in operation for the foreseeable future. 

Within WP4, methods have been developed to use the GRUAN data to assess the uncertainties in 

NWP fields (in terms of temperature and humidity) as well as the uncertainties in brightness 

temperatures computed from the NWP fields. 

 

Conclusions 

 

The aim of this section of the report has been to describe the status of current practise in the 

validation of satellite observations of temperature and humidity. In particular, it has aimed to show 

how NWP systems have come to play a central role in the validation of new satellite sensors, and 

how the ongoing development of data assimilation systems, the observing network and reference 

quality observing networks will support the continued and improved use of NWP and reanalyses for 

the validation of new, and reprocessed, satellite datasets, respectively. The NWP-based validation 

approach will continue to be complemented by conventional approaches to validation (i.e. e.g. SNO 

and satellite-to-ground-truth match-ups). 

The use of NWP-based approaches to the validation of temperature sounding radiances (for 

channels with minimal or no surface sensitivity) is well established. The application to humidity 

sounding data is already useful and improving rapidly, as demonstrated within WP4 of GAIA-CLIM. 

The application to microwave imager data, for which there is high surface sensitivity, although 

demonstrably useful, is hampered by remaining gaps in our understanding and representation of 

surface-radiative effects over ocean and land.  

Further improvements in our understanding and representation of the fundamental spectroscopy 

and radiative transfer in key bands of both, the microwave (50-60 GHz and 183 GHz) and the 

infrared (in both longwave and shortwave CO2 bands), will improve the utility of NWP for validation, 

as the radiometric uncertainties of state-of-the-art IR and MW instruments (currently around 0.3K) 

improve steadily. Both of these gaps (surface radiative transfer and spectroscopy) have been 

identified as part of the GAIA-CLIM gap analysis.  

Finally, another purpose of this section has been to identify, and illustrate through the specific 

examples of temperature and humidity, the main general elements required for any global analysis 

system to be used effectively for the validation of satellite derived ECVs.  
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3. Sea Surface Temperature 
 

Background 

 

Sea Surface Temperature (SST) is an ECV extensively used in NWP and Earth sciences. The first SST 

measurements were derived from temperature measurements of sea water samples obtained using 

buckets (initially wooden, then canvas, and latterly rubber) from aboard sailing ships. SST records 

obtained in this way date back to the 1850s (Kennedy et al, 2011; Rayner et al, 2006). More recent 

in-situ measurements have been made from buoys, drifters, soundings, ship engine intake 

temperatures and in-situ radiometers on board research vessels (Donlon et al, 2002). Measurements 

from radiometers on-board satellites considerably increase the amount and variety of SST data 

available. 

The ocean surface emits radiation at both infrared and microwave wavelengths that depends on SST. 

Satellite SST measurements are therefore available from both infrared (IR) and microwave (MW) 

sensors and are derived from the measured radiances using radiative transfer models. IR sensors 

measure the skin SST (with effective skin depths of ~10-20 µm) while MW sensors measure the sub-

skin SST (with effective skin depths of ~1mm). Due to the complex and variable structure of the 

temperature in the upper ocean (cf. definitions by the The Group for High Resolution Sea Surface 

Temperature)2, differences between the two types of measurement can be as large as 1K and need 

to be taken into account when comparing or combining IR and MW SSTs. 

Thermal IR SST measurements are derived from radiometric observations at wavelengths of ~3.7 µm 

and/or 10 µm. The 3.7 µm channel is primarily used for night-time measurements to avoid 

contamination by reflection of solar irradiance. As both bands are sensitive to the radiative effects of 

clouds, only cloud free measurements can be used after atmospheric correction for scattering and 

absorption effects by aerosols and water vapour. When compared to MW sensors, IR SST 

measurements show better accuracy (when validated against in-situ measurements) and higher 

resolution (1 to 4 km for IR as compared to 25 km for MW) due to the lower signal strength of the 

Earth's Planck radiation curve in the microwave region. MW sensors are, however, largely 

unaffected by clouds and measurements at various frequencies permit the efficient removal of 

atmospheric and surface-roughness effects, thus providing a global picture of the SST. 

SST measurements have been derived from a variety of IR sensors such as the Advanced Very High 

Resolution Radiometer (AVHRR), Advanced Along-Track Scanning Radiometer (AATSR) and Moderate 

Resolution Imaging Spectroradiometer (MODIS), for example. MW sensors include the Tropical 

Microwave Imager (TMI) and Advanced Microwave Scanning Radiometer (AMSR). The current 

EUMETSAT MetOp missions carry both AVHRR and IASI IR sensor that provides complementary 

measurements of SST and an accuracy better than 0.3K (O’Carrol et al, 2012). The second generation 

of geostationary MeteoSat use SEVIRI as IR sensor that can provides SST with an accuracy better 

than 0.5K (Merchant et al, 2009). The upcoming Copernicus Sentinel missions will use the SLSTR IR 

sensors which is a state-of-the-art version of the AATSR aiming for an accuracy better than 0.3K.  

A number of missions are carried out on a global scale such as the NOAA series, GOES series, NASA’s 

AQUA and TERRA, TRMM (NASA and JAXA), Suomi NPP, GCOM (JAXA), MTSAT (JMA), FY-3 (CMA), 

HY-1 and 2 (CAST). Future missions will include Copernicus sentinel (-3) missions, the new 
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generations of MeteoSat, the continuation of the NOAA series, OCEANSAT-3 (India), HY-3 (CAST) and 

GeoKOMPSAT (KMA). 

 

Current approaches to Cal/Val 

 

In-situ observations are used for the calibration and validation activities linked to satellite SST 

observations. They are used to initially calibrate the satellite SST algorithms (derive coefficients of 

the regression equation) and then to continuously validate the retrievals (monitor global statistics of 

“satellite minus in situ” SST differences). Satellite SSTs are collocated with in-situ data from buoys, 

drifters and on-board radiometers (Donlon et al, 2002) to determine both bias and root-mean 

square error. Three-way validation (or triple colocation) methods are using two different satellite 

instruments together with in-situ data to provide an error analysis (O’Carrol et al., 2008; 

Gentemann, 2014). When colocating data, the time and depth of the measurement as well as the 

atmospheric condition (especially wind speed) need to be considered to derive the correct SST value. 

Triple colocation gives root mean square errors (RMSE) of less than 0.3K, and around 0.4K, for IR and 

MW instruments respectively, and around 0.2K for in-situ buoys. Uncertainties depend on the 

instrument type and on both the atmospheric and oceanic conditions that affect the quality of both 

the retrieval and the uncertainties of the reference observations. Comparison of satellite SST 

observations with SST estimates from global-analysis systems is becoming more commonly used, for 

example through the SST Quality Monitoring (SQUAM) (Dash et al, 2010, 2012) developed in the 

context of the Monitoring & Evaluation of Thematic Information from Space (METIS) initiative 

coordinated by EUMETSAT and ESA. 

 

Global analysis systems 

 

Currently, most SST global analyses are observation-based (rather than model and observation 

based, as is currently the case with atmospheric data assimilation systems). They combine IR or/and 

MW SST estimates with in-situ observations. Most have some type of satellite bias correction using 

either in-situ data or one type of satellite data (or both) as a reference (Reynolds et al, 2010). The 

CMEMS OSTIA SST analysis (Donlon et al, 2012) currently uses an Optimal Interpolation (OI) scheme 

to combine SST measurements from IR and MW, as well as in-situ observations, to provide a 1/20 

degree daily SST maps that are used operationally at both UK Met Office and ECMWF for NWP and 

climate-reanalysis applications. In OSTIA, both in-situ and measurements from the VIIRS sensor are 

used as a reference for bias correction. Validation activities showed that SST products have zero 

mean bias and uncertainty around 0.57K compared to in-situ measurements (Donlon et al, 2012). 

The ESA CCI SST analysis (Merchant et al, 2014) used the OSTIA framework to provide an SST analysis 

at 1/20 degree for climate studies based on IR sensors only (AVHRR and (A)ATSR). Validation against 

in-situ data showed a slight positive bias with uncertainties around 0.2-0.3K due to the use of a 

consistent dataset (IR sensors only). NOAA provides two high resolution (¼ degree) SST analyses 

products (Reynolds et al, 2007) based on an OI scheme (OIv2), one using AVHRR only and one using 

AVHRR and AMSRE. The NCEP RTG SST analysis (Thiebaux et al, 2003; Gemmill et al, 2007) also 

combines IR and MW sensors (AVHRR, GOES and AMSRE). It uses a 2D-Var scheme to provide daily 

global 1/12 degree SST analyses used operationally at NCEP. Validation against in-situ data gives 

uncertainties estimates around 0.6K, depending on the area of interest. 
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Most model-based ocean data assimilation systems use L4 SST products to constrain the first layer of 

the ocean. The ECMWF ORAS4/ORAP5 system (Balmaseda et al, 2013; Zuo et al, 2015) uses a 

nudging scheme that relaxes the ocean-surface temperature towards the OSTIA analysis in the 

recent years. The CMEMS operational analysis provided by Mercator Ocean (Lellouche et al, 2013) 

also uses OSTIA in the recent period. The CMCC C-GLORS (Storto et al, 2015) nudges SST towards the 

NOAA high resolution SST (OIv2, Reynolds et al, 2007). On the other hand, the FOAM system 

developed at the UK Met Office (Waters et al, 2015) assimilates the same SST data (along-track 

satellite and in-situ measurements) used to produce OSTIA in the NEMO framework using the 

NEMOVAR assimilation scheme. Validation of FOAM SSTs against in-situ observations and AATSR 

showed an uncertainty around 0.4K globally.  

 

Evolution of global analysis systems 

 

Future evolutions of the analysis systems for SST, both observation and model-based, will focus on 

resolution. High resolution SST analysis are already available such as OSTIA at 1/20 degree, NCEP 

RTG at 1/12 degree or NOAA OIv2 at ¼ degree. However the effective resolution of such products is 

made coarser during the analysis process (Reynolds et al, 2010). The MUR SST analysis (Chin et al, 

2013) is a 0.01 degree product which is able to better capture fine-scale features using innovative 

variational techniques. Improving assimilation methods for SST analysis is an area of active research, 

the goal being a better representation of small-scale features such as SST gradients and eddies. Bias-

correction methods are also evolving to better take into account measurement uncertainties in both 

satellite and ground-reference measurements (Merchant et al, 2014). This is crucial when combining 

measurements from different sources. The definition of SST being ambiguous, the GHRSST has 

defined a framework for the characterisation of the various SST measurements depending on depth 

and atmospheric conditions. These specifications are already adopted by most analyses and new 

products are expected to follow them in the future. Model-based ocean data assimilation is a 

relatively young field. More and more efforts are being focussed in developing high resolution ocean 

analysis systems as NWP centres, such as the UK Met Office and ECMWF, are moving towards an 

Earth system approach to NWP and reanalysis. The SST analysis provided by such systems is still let 

down by the representation of mesoscale features and western boundary current by ocean models 

and the lack of observational constraints, especially in the subsurface. Both ocean models and data 

assimilation methods are evolving towards a better representation of processes that matter for SST 

and NWP. 

Regarding the use of passive IR and MW radiance data, in general, current and anticipated SST 

analysis systems assimilate high level (level 2 and above) SST products derived from the level 1 

radiance (or brightness temperature) measurements. Potential gains in SST-analysis accuracy 

through the development of more optimal assimilation schemes are currently judged to be small 

and limited by the complexity of forward models (ocean foundation temperature to top-of-

atmosphere radiances) and the large uncertainties in the variables required for accurate forward 

models at the (short) spatial scales (1 - 5km) of interest. Nevertheless, in the longer term, there may 

be incremental gains to be realised from the assimilation of level 1 products as global Earth system 

models move to km scale resolutions and represent many of the processes required for accurate 

forward modelling of level 1 radiances. There is likely to be a continued user requirement for SST 

estimates at km-scale resolution and accuracies below those currently attainable (~0.3K). 
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Reference observation networks 

 

The requirement for reference quality observations of SST and ocean sub-surface temperature is 

recognised as a priority. In practice, temperature measurements from Argo floats are used in some 

communities as independent reference-quality observations (Merchant et al, 2014).  

For remotely sensed radiometric measurements of SST, there are initiatives to improve the 

metrological traceability of ground-truth reference. For example, FRM4STS is an ESA funded project, 

to establish and maintain SI traceability of global Fiducial Reference Measurements (FRM) for 

satellite derived surface temperature product validation (Donlon et al, 2014; Meldrum, 2017). 

 

Conclusions 

 

Currently, colocation with in-situ observations is the preferred method for satellite SST Cal/Val 

activities. Triple colocation (MW, IR and in situ) is the most robust and accurate validation method, 

providing uncertainties for the in-situ observations as well.   

The comparison of new satellite based SST estimates with estimates produced by global SST analysis 

systems is becoming more widespread as analysed SSTs improve in accuracy and spatial resolution. 

In comparison to the systems developed for atmospheric analysis, and current practise for satellite 

validation, many of the same elements are in place in the domain of SST: a comprehensive observing 

system comprising high quality in-situ and satellite observations; sophisticated global analysis 

systems running at high spatial resolution (5km) in both near-real-time and in reanalysis mode; and 

an evolving network of reference observations for both in-situ and remotely sensed measurements. 

Current uncertainties of the global analyses (0.3K in the best cases) are close to the capabilities of 

the highest specified satellite observing systems (0.1-0.3K). 

It is therefore very likely that validation practises for SST will continue to make increasing use of 

global SST analysis systems for new satellite sensors. 
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4. Sea level 

 

Background 

 

The principle behind the sea-level measurement by satellites is relatively simple. Satellite radar 

altimeters transmit an electromagnetic signal to Earth, and receive the echo from the sea surface, 

thus providing a measurement of the satellite-to-ocean range. This measurement is affected by 

water vapour and/or ionisation. After correction, the final range is estimated. Knowing the satellite 

orbit, the height of the satellite with respect to a reference ellipsoid can be determined. The sea-

surface height is the range at a given instant from the sea surface to the reference ellipsoid. The sea-

surface height is estimated as the difference between the satellite height and the satellite-to-ocean 

range.  

Different frequencies can be used for radar altimeters depending on the mission objectives and 

constraints. Ku band (13.6 GHz) is the best compromise between capabilities of the technology, 

available bandwidth, sensitivity to atmospheric perturbations, and perturbation by ionospheric 

electrons. C band (5.3 GHz) and S band (3.2 GHz) are more sensitive ionospheric perturbation, and 

less to the effects of atmospheric liquid water. Such bands allow the correction of the ionospheric 

delay in combination with the Ku band. Ka band (35 GHz) allows better observation of ice, rain, 

coastal zones, land masses and wave heights. It has a relatively large bandwidth that provides higher 

resolution, especially near the coast. It is also better reflected on ice. It is affected by tropospheric 

water and water vapour. Measurements are not available for precipitation higher than 1.5 mm/h. 

Dual-frequency altimeters correct for delay due to ionospheric electrons and can give estimates of 

precipitation rate. 

The largest uncertainties in the altimeter measurement system are due to poor orbit determination, 

introducing uncertainties at wavelengths greater than 1000 km while the mesoscale signal is less 

affected. Multi-mission altimeter data sets have significantly reduced these uncertainties and 

improved the accuracy of the satellite sea level observations (to the centimetre level) (Le Traon, 

2013; Verron et al, 2015; Ablain et al, 2017; Stammer, D. and Cazenave, 2017). The mean sea level 

ECV is the global average of the sea-surface height and its evolution over time is routinely monitored 

on the European level as part of the ESA CCI3. Currently, global and regional sea level trends 

uncertainties are around 0.6 and 1-2 mm/year, respectively. The objective is to reach 0.3 and 0.5 

mm/year (Ablain et al, 2015).  

There are currently 6 satellite altimeters in service. Jason-2 and Jason-3 (cooperation between CNES, 

EUMETSAT, NASA and NOAA) fly a circular non-sun-synchronous orbit with a 10-day repeat cycle but 

ground tracks with a 315-km-width at the equator. From July 2017, Jason-2 is operating on a lower 

orbit than Jason 3. Saral/Altika (CNES and ISRO) has a 35-day repeat cycle and is complementary to 

Jason-2 ground tracks. From July 2016, Saral is on a drifting orbit. Cryosat-2 (ESA) carries a SAR 

interferometric altimeter. It flies on non-sun-synchronous orbit with 92° inclination for observing the 

poles. Sentinel-3 (Copernicus/ESA) has similar ground tracks to Saral, but with a 27-day repetitive 

cycle. HY-2A (CAST) was on a 14-day repeat cycle orbit until March 2016 and then moved on a 

geodetic orbit with 168-day repeat cycle. Future missions will include the launch of CFOSAT (CNES 

and CNSA) in 2018, the next Sentinel-3 (ESA) and HY-2 (CAST) satellites and the JASON-CS 

(Copernicus, ESA, EUMETSAT, NOAA, CNES and NASA/JPL) series from 2020. The launch of the swath 
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altimeter SWOT (NASA, CNES, CSA and UKSA) in 2021 should improve the coverage and resolution of 

the SSH measurement with respect to the currently-used profile altimeters (Fu and Ubelmann, 

2014). 

 

Current approaches to Cal/Val 

 

Methods used for the calibration and validation of satellite-altimetry data can be separated in three 

categories: 

• mono-mission analysis assessing the internal consistency of a single mission 

Checks on the number of available measurements and their validity are performed. Crossover 

differences are used to estimate the uncertainty of the SSH measurement (Cheney et al, 1989). The 

SSH measurement is monitored along-track to control the consistency and the stability of the 

altimeter measurement. 

• multi-mission analysis to detect drifts or biases 

Cross comparison between satellites allows to calibrate new altimeters (Prandi et al, 2015) and 

detect inconsistencies in the altimetry record provided by the different missions. It also allows to 

provide consistent long-term record of the sea-level ECV (Dettmering and Bosch, 2013). 

• comparisons with the tide gauge and buoy networks 

Comparisons with tide gauges are made at dedicated calibration sites in order to determine absolute 

bias of the SSH measurement (Valladeau et al., 2012). Colocation with the global tide gauges 

network is also part of the Cal/Val procedure to detect drifts or jumps in the SSH record. Tide gauge 

sea levels are routinely monitored for low-frequency drifts drift by comparison to readings taken 

from tide staffs by a human observer. Tide gauges are able to determine global sea-level trends with 

an uncertainty of a few tenths of a millimetre per year (Douglas, 1991). Tide gauges are used to 

monitor the stability of satellite altimeters and detect potential drifts (Mitchum, 1998). 

 

Global analysis systems 

 

Objective analyses of satellite-altimeter data (Le Traon et al, 1998) use optimal interpolation 

techniques to provide global maps of SSH. The CMES SL TAC provides near-real-time SSH analyses at 

¼ degree resolution using all the satellite missions available. The system acquires and synchronizes 

altimeter and auxiliary data. Missions are homogenized with the same models and corrections. The 

multi-mission cross-calibration process removes any residual errors and biases. Altimeter fields are 

interpolated at crossover locations and dates. Data are cross validated, filtered from residual noise 

and small scale signals and finally sub-sampled. An optimal interpolation is conducted merging all 

the flying satellites to produce SSH maps. 

Model-based ocean analysis systems currently assimilate level 3 along-track sea-level observations 

(Balmaseda et al, 2013; Zuo et al, 2015; Waters et al, 2015; Storto et al, 2015, Lellouche et al, 2013). 

Such systems can provide SSH with an uncertainty of less than 10 cm (Waters et al, 2015; Zuo et al, 

2015).  
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Reference Observation Networks 

 

The main reference observation networks for sea level are based on tide gauge datasets. For 

example, 5 tide gauge networks (GLOSS/CLIVAR, SONEL, OPPE, BODC and IMEDEA) are used for 

validation of sea level from altimetry in the context of the CMEMS SL TAC (Prandi and Debout, 2016). 

Tide gauges being by definition located close to the coast, most of the ocean surface is uncovered by 

such measurements. The use of the Argo dataset and its near global coverage as a reference 

network has been investigated and showed interesting potential (Legeais et al, 2016). Maintaining 

the observing network as such is the minimum requirement to ensure the quality of the sea-level 

measurement from altimetry. 

 

Conclusions 

 

Currently, colocation with in-situ observations from tide gauges and multi-mission calibration are the 

preferred method for altimeter sea level Cal/Val activities. 

Objective analyses of global sea level are already able to integrate new satellite measurement as 

part of the Cal/Val procedure (Dibarboure et al., 2011). The uncertainty of sea-level estimates from 

model-based analysis systems is progressively reaching the level of the current satellite altimeters (a 

few cm). As for SST, many of the elements for validation through global analysis systems are in place. 

The observing system gathers high quality in-situ and satellite observations and is constantly 

evolving. Global analysis systems are running at high spatial resolution in both near-real-time and in 

reanalysis modes allowing the ingestion of the new altimeter data. 

Validation practises for sea level will most likely make increasing use of global analysis systems for 

new altimeters.  
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5. Sea Ice 

 

Background 

 

Sea-ice concentration (SIC) is the main sea ice satellite observation assimilated in global analysis 

systems. It is mainly measured by satellite passive microwave radiometry. Microwave sensors can 

detect sea ice throughout all seasons thus providing a consistent data record. Successive series of 

satellites have carried microwave radiometers since the 1970s. The Special Sensor Microwave 

Imager (SSM/I) on board the Defense Meteorological Satellite Programme (DMSP) series has been 

operating since 1987 at frequencies lower than 100GHz. The more recent Advanced Microwave 

Scanning Radiometer (AMSR) instrument and the Special Sensor Microwave Imager Sounder (SSMIS) 

also operate at <100 GHz. The SIC derived from passive microwave radiometers are affected by 

errors due to atmospheric absorption and emission, wind roughening over open water, anomalous 

ice and snow emissivity. While the errors in the open water limit are relatively easy to assess, this is 

much more difficult over sea-ice as a reference ice concentration must be determined from high-

resolution imagery or field observations. SIC from passive microwave radiometers are relatively 

coarse resolution, which makes a precise determination of the ice edge challenging. Multiple 

algorithms which are able to derive the SIC from the measured sea-ice emissivity have been 

developed (Andersen et al, 2007). The intercomparison between the SIC retrieval from these various 

approaches provide an estimate of the SIC uncertainty (Ivanova et al, 2014). The current sensors 

providing SIC measurements include AMSR2 (GCOM-W1) and SSMIS (DMSP). Future missions will 

include a follow-on AMSR2, which will be on board the future GCOM-W2 satellite (2019 launch). 

 

Current approaches to Cal/Val 

 

Calibration and validation activities for satellite SIC are quite different from what is done for SST and 

sea level. They are not based on colocations between satellite tracks and localised observations. SIC 

from satellites is instead validated against high resolution manual ice charts (Andersen et al, 2007; 

Tonboe et al, 2016). The National Ice Centre (NIC) has been producing ice charts for both Southern 

and Northern Hemispheres for more than 40 years. Ice charts are produced manually from all 

available satellite imagery, in-situ observations from ships and aircraft and 

meteorological/oceanographic guidance data. The ice charts are composite charts of the ice 

conditions over a period, using any data up to 72 hours old, used for strategic and tactical planning 

for offshore and shipping activity. Maps are produced manually by analysts and SIC estimates rely on 

the subjective judgement of the analysts. The use of high-resolution data from SAR and/or IR sensors 

gives a more accurate description of the ice edge than passive microwave data. There is more 

attention to detail for the ice edge than for the central Arctic, as ships operate in ice-free areas. The 

differences between ice charts from different ice centres can be as large as 30%, especially at 

intermediate concentrations (Kreiner et al, 2017). The ice charts are primarily based on SAR data 

(Radarsat-2), together with IR-line scanners such as AVHRR and MODIS data. 

The satellite SIC is compared with the ice charts in terms of total ice concentration given by the ice 

chart. Both products are projected onto a common grid and a cell-by-cell comparison is carried out. 

For each ice chart, the deviation between ice-chart concentration and satellite retrieval is calculated. 

The match between the satellite measurement and the ice chart concentration interval is computed. 
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From there, the bias and uncertainty of the satellite measurement are available. It is difficult, if not 

impossible, to provide accurate uncertainty estimates for the ice charts (Andersen et al, 2007), but 

the target uncertainty for satellite SIC is 10% in the Northern Hemisphere and 15% in the Southern 

Hemisphere with respect to the charts (source: OSI-SAF website4). 

Another aspect of the Cal/Val activities is the intercomparison between sea-ice retrieval algorithms. 

There are tens of different algorithms to retrieve SIC from microwave emissivities. Ivanova et al 

(2014) give an extensive overview of the most commonly used algorithms. The authors show that 

some algorithms are more adapted to high-concentrations areas while others perform better for 

intermediate or low concentrations. They also suggest that the OSI SAF method, combining 

algorithms adapted to different concentration rates, is relevant for global SIC products. Comparisons 

between algorithms also allow to provide an estimate of the uncertainty of SIC data that can be used 

for model-based SIC data assimilation. 

 

Global analysis systems 

 

SIC analyses based on satellite observations only are produced by the National Snow and Ice Data 

Centre (NSIDC) and EUMETSAT’s OSI-SAF. As mentioned above, data from passive microwave 

radiometers is used to produce gridded maps of SIC. These products have been used to produce SST 

and sea ice analyses (Reynolds et al, 2002; Rayner et al, 2003). The OSTIA SST and sea-ice analysis 

(Donlon et al, 2012; Roberts-Jones et al, 2012), for example, uses the 10-km resolution near-real-

time OSI-SAF product. Gaps in the data are filled using spatial and temporal interpolation techniques 

or persistence, if no data is available for more than a certain amount of time. Hirahara et al (2016) 

used similar techniques to produce the sea-ice analysis used as lower boundary condition for the 

ECMWF ERA5 atmospheric reanalysis system. 

Model-based sea ice analyses are more and more common with the advances in sea-ice modelling. 

Most SIC analyses are produced by coupled ocean-sea ice models that assimilate pre-processed SIC 

values (often already gridded) from OSI-SAF or NSIDC products (Zuo et al, 2015; Waters et al, 2015; 

Storto et al, 2015, Lellouche et al, 2013). Innovation statistics provide an estimate of the uncertainty 

with respect to the assimilated data. Both FOAM (Waters et al, 2015) and ORAP5 (Tietsche et al, 

2017) systems, for example, provide a SIC analysis that fit the observations better than 5%.  

However, like in the case of SST and sea-level, model-based SIC analyses are not commonly used in 

the Cal/Val activities for satellite sea level measurements. Sea-ice models are evolving quickly and 

are able to realistically represent more and more physical processes (Vancoppenolle et al, 2009; 

Hunke and Lipscomb, 2010). Sea-ice modelling and data assimilation can potentially provide high 

quality and high-resolution information to complement and validate satellite observations of SIC. 

 

Reference Observation Networks 

 

Independent reference observations for passive microwave SIC Cal/Val mainly come from ships, 

aircraft and SAR imagery. Visual observations of sea ice from ships can be very accurate and are 
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reported in ice diaries from dedicated cruises (Haas and Lieser, 2003; Lieser, 2005). Aircraft data are 

also very useful for sensor calibration (Comiso et al, 2003). SAR data from Radarsat provide high 

resolution SIC observations, but its use is restricted to the winter season and its quality is subject to 

the skills of the ice analyst (Kwok, 2002). 

 

Conclusions 

 

Currently, the preferred methods for satellite SIC Cal/Val activities are statistics of matches to ice 

charts and the inter-comparison of SIC retrieval algorithms. 

Observation-based sea ice analyses are currently an extension of the satellite products using 

interpolation and persistence techniques to fill the gap left by missing data. The rapid evolution of 

sea-ice models will provide information on sea ice that is difficult to measure via the observing 

systems. Sea ice data assimilation is also developing fast and the accuracy of the SIC analyses is 

continuously improving. As for SST and sea level, many of the elements for validation through global 

analysis systems are in place. The observing system for sea ice is well maintained due to its 

operational applications and the economic impacts linked with sea-ice monitoring. Global analysis 

systems are running at high spatial resolution in both near-real-time and in reanalysis modes, 

allowing the ingestion of the SIC data from passive radiometers. 

The difficulties associated with the observation of sea ice and the rapid progresses made by sea ice 

modelling and data assimilation suggest good prospects for the use of global analysis systems for the 

validation of SIC from satellites. 
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6. Soil moisture 
 

Background 

Soil moisture (SM) plays an important role in moisture and heat interactions between the land 
surface and the atmosphere, which makes it an important factor in NWP and climate models. SM 
fluxes are key components of the hydrological cycle, thereby influencing river discharge, floods, 
droughts and plant transpiration. The accurate representation of SM can benefit many applications, 
such as seasonal weather forecasts (e.g. Weisheimer et al. 2011), agriculture (e.g. Martínez-
Fernández et al., 2016) and operational flood forecasting (e.g. Wanders et al., 2014). In 2010, SM 
was endorsed as ECV by the GCOS Programme5. 

The water content of a shallow surface layer can be estimated from a low-frequency microwave 
signal in the 1-10 GHz range (Schmugge et al., 1983). The L-band (1.1– 1.7 GHz) is often considered 
the optimal wavelength to observe SM since higher frequencies are more susceptible to 
contamination from vegetation and atmospheric effects (Schmugge et al., 1983; Kerr et al., 2001). 
The three principal instruments used for space borne low frequency microwave measurements are 
synthetic aperture radars (SAR), radiometers and radar scatterometers. Three of the core missions 
encompassing these instrument measurements are (1) the European Space Agency (ESA) soil 
moisture and Ocean Salinity (SMOS) mission, (2) the joint European Organization for the Exploitation 
of Meteorological Satellites (EUMETSAT)/ESA MetOp mission and (3) the National Aeronautics and 
Space Administration (NASA) Soil Moisture Active Passive (SMAP) mission.  

The SMOS mission was launched in 2009 and is the first mission dedicated to soil moisture retrievals 
(Kerr et al., 2007, 2010, Pinori et al., 2008). It features a passive interferometric radiometer that 
measures the thermal emission of the Earth (brightness temperature) at an L-band frequency of 1.42 
GHz (21 cm wavelength), at full polarization and for incidence angles from 0 to 60°. The SMOS level 2 
SM product is retrieved by inverting a radiative-transfer model, the so-called tau-omega model. Up 
to 5 cm depth of soil are sampled every 2-3 days, with an average horizontal resolution of about 40 
km.  

The EUMETSAT Advanced Scatterometer (ASCAT) active sensor on the METOP-A (2006-) and 
METOP-B (2012-) satellites is a real-aperture radar instrument measuring radar backscatter using a 
VW polarization in the C-band (5.255GHz) (Bartalis et al., 2007a). Schmugge et al (1983) estimated 
that C-band observations typically penetrate between 0.5 and 2.5 cm depth. ASCAT produces a 
triplet of backscatter coefficients from the different antenna beams on both sides of the METOP 
satellites. Backscatter is measured at various incidence angles, which enables the extraction of the 
yearly cycle of the backscatter-incidence angle relationship. This is a prerequisite to the removal of 
seasonal vegetation effects (Bartalis et al., 2007a, 2007b). The extraction of the level 2 SM product is 
based on the change detection approach (Wagner et al., 1999). The ASCAT level 2 SM product is the 
first near-real-time operational SM product and produces global soil moisture maps at both 50 km 
and 25 km resolutions and a sampling time of 1-3 days.   

The SMAP mission was launched by NASA in 2015, with the aim of integrating an L-band SAR and a 
real-aperture L-band radiometer as a single observing system, thereby combining the strengths of 
active and passive remote sensing for mapping SM (Entekhabi et al., 2010a). The radiometer and 
radar share the same feed from a large 6 m diameter conically scanning antenna. SAR instruments 
actively observe L-band brightness temperature at high resolution (of the order 1-100 m). However, 
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 https://www.ncdc.noaa.gov/gosic/gcos-essential-climate-variable-ecv-data-access-matrix 
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they typically operate with narrow swaths, which limits the temporal frequency of their 
measurements. Furthermore, the backscatter is highly sensitive to speckle noise, surface roughness 
and vegetation. These inherent difficulties with SAR measurements make them unsuitable alone to 
map soil moisture for NWP and hydrological applications. One of the objectives of SMAP was to 
merge the radar and radiometer observations in order to achieve an SM product at an intermediate 
resolution of about 10 km, while approaching the accuracy and the temporal frequency of the 
radiometer. The disaggregation of brightness temperature is performed using a time series change 
analysis, which assumes a linear relationship between the brightness temperature and the spatially 
averaged radar backscatter measurement anomalies. The level 2 SM product is retrieved by 
inverting the tau-omega model using a similar technique to SM derived from SMOS brightness 
temperatures. The SAR instrument stopped working on 7 July 2015 due to a hardware failure, after 
collecting just two months of data. Nevertheless, the radiometer continues to function; since 2017 
NASA has delivered (in beta release6) the SMAP high resolution product using Sentinel-1 data 
combined with passive SMAP data .  

The SMOS and SMAP missions aim to provide soil moisture with an uncertainty of less than 0.04 
m3/m3, which would allow acceptable estimates of SM surface fluxes for NWP and hydrological 
applications (Kerr et al., 2010). The SMOS level 2 SM product and level 2 ASCAT surface SM product 
have been validated using in-situ SM measurements by Albergel et al., (2012), amongst other 
studies. The two datasets demonstrated an average root mean square difference (RMSD) of about 
0.08 m3/m3 and correlations coefficients of 0.53 for SMOS and 0.54 for ASCAT, averaged over more 
than 200 sites with contrasting biomes and climatic conditions over a one year period (2010). Al-
Yaari et al., (2017) evaluated SMOS and SMAP level 3 products (retrieved using a multilinear 
regression approach) using in-situ observations from more than 400 stations around the world. They 
found quite similar overall levels of uncertainty between the two products but some differences in 
performance among the various networks. In both studies, the SM products performed best on 
average in semi-arid or arid regions, particularly over Australia (average correlations > 0.7). The 
ASCAT C-band backscatter measurements have to contend with substantially reduced sensitivity to 
SM in moderately vegetated areas (<3 kg/m2), while L-band brightness temperature measurements 
are sensitive to SM up to about 5 kg/m2, representing about 65% of the Earth’s surface. Some of the 
vegetation signal in the ASCAT backscatter measurements is removed using the fixed seasonal 
correction applied during the change detection process and work is ongoing to allow for inter-annual 
variability (Vreugdenhil et al., 2016). The main drawback for the SMOS and SMAP products is 
radiofrequency interference (RFI), whereby anthropogenic L-band emissions interfere with the 
natural L-band emissions from the Earth. RFI degrades the accuracy of the SM retrievals and is 
prevalent over much of Asia and some parts of Europe and South America. The RFI factor could 
partly explain the similar performance of SMOS and SMAP by Albergel et al., (2012), despite L-band 
being considered a superior frequency to C-band for SM retrievals. It is worth mentioning that the L-
band is a globally protected frequency and since the SMOS launch more than half the RFI sources 
over Europe have been localized and switched off and progress has been made to remove these 
sources in other parts of the world (Oliva et al., 2012).  

The minimum requirement for future satellite missions is to continue the data time series started by 
previous missions, since data gaps are detrimental to all users. There is also a consensus among 
users for the need to increase the resolution and to maintain or decrease the uncertainty of the 
corresponding SM products. This is partly motivated by the need to keep pace with the increasing 
resolution of operational NWP models and the user requirements of hydrometeorological models 
for smaller scale processes, e.g., convective precipitation and runoff patterns. The ASCAT instrument 
is scheduled to last until at least the mid 2020s with the launch of Metop-C in 2018 (Wagner et al., 
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 See https://nsidc.org/data/smap/smap-data.html.  
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2013). Future plans are already at an advanced stage concerning the instrument to succeed ASCAT, 
namely SCA on the second generation satellites of the EUMETSAT polar system (Lin et al., 2012), 
which will provide C-band scatterometer data for SM retrievals at a resolution of 25 km. There are 
also various ideas for follow-on missions to SMOS. For example, the proposed SMOS-NEXT mission 
would provide high resolution SM measurements of 4 km using a new concept for interferometric 
measurements (Soldo et al., 2013), but the viability of this technology is still being assessed. 
Recently, there has been interest in combining C-band and L-band data from scatterometers and 
radiometers with independent high resolution C-band SAR data from the ESA Sentinel-1 satellite to 
reach resolutions of the order 1 km. This follows the same reasoning for merging the SAR and 
radiosonde data in the SMAP mission. Encouraging preliminary results have been demonstrated 
assimilating SMAP and Sentinel-1 SAR in the NASA catchment land surface model (LSM) (Lievens et 

al., 2017) and by combining ASCAT-derived SM with Sentinel-1 SAR for high resolution soil moisture 
maps over Europe (Bauer-Marschallinger et al., 2017). The SMAP-Sentinel Level 2 SM product is 
described by Das et al. (2017). 
 
 

Current approaches to Cal/Val 

 

 In-situ reference measurements 

In-situ SM observations are commonly used as a reference for validating space borne SM 
measurements due to their accuracy and long-term legacy. Dorigo et al., (2011) summarizes several 
of the most common in-situ measurement techniques, including the gravimetric method (see e.g. 
Seneviratne et al., 2010), Neutron probes (e.g. Vachaud et al., 1977), Electromagnetic techniques 
(e.g. Robinson et al., 2008)) and Cosmic-ray neutrons (e.g. Zreda et al., 2008). The gravimetric 
method, which is the only established technique to provide direct measurements, derives the SM 
content from the difference in mass of a sample of soil before and after drying. This process is labor-
intensive and destructive and is therefore impractical for frequent temporal sampling. Instead, the 
gravimetric method is used for long-term climate studies and to calibrate the other techniques, 
where the instruments provide indirect but automatic measurements with a high temporal 
resolution (typically hourly). These indirect methods are employed for most of the high quality SM 
networks around the world, including the OZNET in Australia (Smith et al., (2012)), SMOSMANIA in 
France (Calvet et al., 2007, Albergel et al., 2008), REMEDHUS in Spain (Martınez-Fernandez and 
Ceballos, 2005), AMMA in Africa (Cappelaere et al., 2009, de Rosnay et al., 2009) and the 
SNOTEL/SCAN networks in the United States (Schaefer and Paetzold, 2000), amongst others. In total 
more than 500 stations provide in-situ SM data at depths typically ranging between 0.05 m and 1 m 
and starting as early as the 1990s. The International Soil Moisture Network (ISMN, Dorigo et al., 
2011) provides a harmonized collection of the SM observations from most of the available networks. 
Incoming soil-moisture observations are automatically screened for abnormal outliers and 
normalized to volumetric units.  

The estimated uncertainty of in-situ SM measurements, accounting for instrument errors and local 
representativeness errors from the calibration, is typically in the range 0.02-0.03 m3/m3. These 
values are generally less than the expected uncertainty of most space borne SM measurements, 
including the target uncertainties of the SMOS and SMAP missions (0.04 m3/m3). Progressively, the 
technology and calibration techniques are being refined to reduce the instrument and calibration 
errors, while also reducing the cost of the sensors (see e.g. Kizito et al., 2008). New networks are 
also being introduced, which is gradually improving the global spatial coverage. For example, the 
Rahm regional soil moisture network was introduced in 2017 in the Netherlands (Benninga et al., 
2018). The network consists of 15 stations over an area of 240 km2, measuring soil moisture using 
capacitance probes at several depths between 5 and 80 cm. The accuracy of the gravimetric 
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calibration was enhanced by using soil-specific calibration functions, improving the estimated 
uncertainty from 0.03 m3/m3 to 0.02 m3/m3. 

When comparing in-situ and space borne measurements, it is important to consider the vastly 
different spatial support between the two datasets (e.g. point-wise vs ~40 km). This is especially 
problematic given that SM can vary strongly over meters, for example due to variations in soil 
texture, topography or vegetation. It is therefore questionable whether the absolute difference 
between the two datasets has any value at all (Koster et al., 2009). For this reason, it is commonly 
assumed that the useful signal in the SM time series is a result of the temporal variability, rather 
than the absolute SM values (Entekhabi et al., 2010b). In line with this school of thought, it is 
necessary to rescale the SM datasets (reference and space borne) such that their climatologies are 
equivalent, either by using a linear rescaling (e.g. Albergel et al., 2012) or a cumulative distribution 
function (CDF) matching technique (Drusch et al., 2005; Reichle et al., 2007).    

 

Triple colocation 

 

A significant drawback with in-situ observations is their spatial coverage. Most networks consist of 
scattered sites in mid-latitudes, with huge gaps often between networks (hundreds of kilometers) 
and very little representation in the tropics and high latitudes. Therefore, it is not possible to provide 
complete uncertainty maps. For this reason, the comparison of satellite datasets with model 
simulations or with other satellite datasets for Cal/Val activities (e.g. De Jeu et al., 2008; Al-Yaari et 

al., 2014) will remain useful, even if there is ambiguity regarding the uncertainty of the reference 
dataset. The Triple Colocation (TC) method is designed to overcome this problem by estimating the 
unknown uncertainty variances of three colocated mutually-independent datasets, without treating 
any one dataset as the reference or “truth”. Importantly, TC assumes that the datasets’ 
uncertainties are uncorrelated with each other. It has been employed in many different applications, 
including evapotranspiration (Rosema, 1993), before being adopted in the SM context by Scipal et 

al., (2008). Since then, numerous SM studies have used this validation tool (e.g. Miralles et al., 2010; 
Draper et al., 2013). TC is often applied to SM anomalies rather than absolute time series, as they fit 
better with the underlying assumptions of the method (Miralles et al., 2010). So far, the TC method 
has been applied primarily to surface SM. Most space borne instruments measure only the first few 
centimeters of SM, which limits the available datasets for validating the root-zone to in-situ 
observations and model simulations. Furthermore, the root-zone SM is characterized by very slow 
temporal dynamics with typically variations at the annual scale for the first meter of soil. This 
contradicts a basic assumption of the TC theory, which assumes products have randomly distributed 
uncertainties. Nevertheless, Pellarin et al. (2013) showed interesting results on preliminary TC usage 
for root-zone SM validation. Further research would be required to make the method suitable for 
root-zone and slow varying products validation.  

 

Global analysis systems 

The ingredients for global SM analysis systems generally consist of LSMs and a combination of 
remotely sensed near-surface SM observations and/or screen-level observations of temperature and 
humidity. Due to their sparse spatial coverage, in-situ SM observations are limited to validation 
applications. Data Assimilation (DA) is used to interpolate and extrapolate the observations and to 
merge the information content with the LSM. Additionally, DA takes advantage of the dynamics of 
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the model to spread the information content from the observations in space and time, including a 
vertical transfer of information from the surface to the root-zone (Reichle et al., 2002; Sabater et al., 
2007). The resulting SM analysis has a complete spatial coverage at the model resolution, but in 
theory with reduced uncertainty relative to the model or observations alone.   

Before the advent of near-real-time, global-scale space borne SM measurements, screen-level 
measurements (2 m temperature and relative humidity) from the SYNOP network were assimilated 
indirectly into operational soil moisture analysis systems. Mahfouf (1991) demonstrated that short-
term forecast uncertainties in screen-level variables can be used to infer SM corrections using a 1D-
optimal interpolation (OI) DA method. For instance, the OI method would interpret an 
underestimation in screen-level temperature (positive increments) as an overestimation in SM 
(negative increments) and vice-versa. In 1999, the European Centre for Medium Range Weather 
Forecasts (ECMWF) introduced their operational OI system (Douville et al, 2000; Mahfouf et al, 
2000), which was active until 2010. The OI method was widely accepted at most NWP centres and is 
still operational at some NWP centres, including Meteo France (Giard and Bazile, 2000). Its 
popularity stemmed from the fact that it improved the accuracy of NWP forecasts in the lower 
boundary layer. In contrast, there is some evidence at ECMWF that it degraded the accuracy of the 
soil moisture analyses due to unrealistic SM increments (Drusch and Viterbo, 2007). Also, it is not 
flexible enough to assimilate new observation types, including space-borne measurements. 
Consequently, most operational centres have either introduced or are moving towards flow-
dependent DA methods, which have dynamic background error covariances7 and are flexible enough 
to assimilate both screen-level data and space borne SM measurements. The flow-dependent 
methods used in global land surface analysis systems are mainly based on the Extended Kalman 
Filter (EKF, Jazwinski, 1970) or the Ensemble Kalman Filter (EnKF, Evensen, 1994). 

At ECMWF, the Simplified Extended Kalman filter (SEKF) was introduced in operations in 2010 to 
assimilate screen-level variables (de Rosnay et al., 2013) and has been assimilating ASCAT-derived 
SM since 2015 (ECMWF, 2015). The current resolution of the ECMWF global model is 9 km. The 
ASCAT data are mapped to the nearest model grid point, and CDF-matching is used to rescale the 
observation into volumetric SM (the model is not rescaled). The UK Met Office employs an SEKF to 
assimilate the same observation types using a similar approach (Candy et al., 2012). The SEKF 
method uses a fixed background error covariance at the start of each assimilation window, but 
generates implicit flow-dependence through the assimilation window via additional model 
integrations in the calculation of the observation operator Jacobians. At ECMWF, de Rosnay et al. 
(2013) demonstrated that the SEKF produces marginally better surface SM analysis scores compared 
with the OI method when validating against in-situ observations from the SMOSMANIA network in 
France, with average correlations of 0.84 for the SEKF and 0.80 for OI over January to November 
2009. Other advantages of the SEKF over OI were highlighted, including smaller and more realistic 
analysis increments in the root-zone. In the aforementioned study by Albergel et al. (2012), the 
SMOS and ASCAT-derived SM products were also compared with an offline version of the SM 
analysis at ECMWF. The SEKF was configured to assimilate both ASCAT-derived SM and screen-level 
variables into the H-TESSEL LSM at 25 km resolution. The surface SM analysis demonstrated a 
superior accuracy relative to the space-borne measurements (validated against in-situ observations), 
with a CC (RMSD) of 0.70 (0.07 m3/m3) relative to 0.53 (0.08 m3/m3) for ASCAT and 0.54 (0.08 m3/m3) 
for SMOS. At NASA, the assimilation of SMAP in the catchment land surface model using an EnKF 

                                                           
7
 The GAIA-CLIM guidance note 'Guide to Uncertainty in Measurement & its Nomenclature' (http://www.gaia-

clim.eu/sites/www.gaia-clim.eu/files/document/d2_6_final.pdf) cautions that ‘error’ and ‘uncertainty’ are not 
synonyms. Accordingly, in this report we have used ‘uncertainty’ to describe a probability distribution from 
which the (unknown) error on the measured value is drawn. The term ‘error covariance’ has a specific meaning 
in data assimilation, usually denoting the (co-)variance of expected error represented by a (routinely Gaussian) 
probability density function. 
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was evaluated for the period April 2015 to November 2016 (Reichle et al., 2017). Core validation 
sites were selected at 38 locations based on a number of criteria, including dense sensor networks 
and well documented intensive field campaigns. The SM analyses (SMAP level 4) in the root-zone 
compared very well with the in-situ observations at these sites, with an unbiased RMSD of 0.038 
m3/m3, thereby meeting the target uncertainty of the SMAP mission (0.04 m3/m3). 

High quality soil moisture reanalyses have been developed for climate studies and for validation 
purposes. Examples include the ERA-land reanalysis developed at ECMWF (Balsamo et al., 2015). The 
ERA-land is an offline land surface model simulation forced by ERA-interim atmospheric conditions 
(Dee et al., 2011) from which the precipitation forcing was corrected by high quality monthly 
averaged precipitation provided by the Global Precipitation Climatology Project (GPCP). It has since 
been used as a benchmark in the evaluation of new and existing SM products. For instance, Albergel 
et al. (2013) compared ERA-land with a microwave based multi-satellite SM dataset (SM-MW) over 
the time period 1980-2010. The SM-MW represents a blended contribution of passive products such 
as SMMR and AMSR-E (1980-2010) and more recent active products from the ERS and ASCAT 
scatterometers (1992-2010). It was found that the ERA-land and SM-MW became more consistent 
with each other over time, especially after the incorporation of the active satellite data (correlations 
increasing from 0.52 ± 0.1 to 0.66 ± 0.04). This evidence reinforces the need to expand the satellite 
network and to combine different space borne SM products in order to obtain more accurate SM 
maps. Indeed, a state-of-the-art blended space borne product has been developed by ESA’s CCI, 
consisting of a combination of reprocessed passive and active microwave SM retrievals going back to 
1979 (Liu et al., 2012; Gruber et al., 2017; Dorigo et al., 2017).     

 

Evolution of global analysis systems  

Operational SM analysis systems are being adapted to assimilate L-band space-borne measurements 
operationally. Muñoz-Sabater (2015) demonstrated the assimilation of SMOS level 1c brightness 
temperature using the SEKF in an offline version of the ECMWF land data assimilation system (LDAS) 
over a 15-day period. The results were encouraging, although it was acknowledged that longer 
validation studies would be required to properly evaluate the product. The SMOS level 2 SM product 
is retrieved by finding the soil moisture and vegetation characteristics that minimize a cost function 
of the difference between modelled direct and observed angular brightness temperature. A major 
drawback of this process is the computing time taken to minimize this cost function, which means 
the SM product cannot be ready in near-real-time for operations. An alternative SMOS SM product 
has been derived using a fast inversion with a neural network (SMOS NN) trained on SMOS level 2 
SM (Rodríguez-Fernández et al., 2017). SMOS NN is available within 3.5 hours of sensing, which is 
well within operational time constraints. Rodríguez-Fernández et al., (2017) found that SMOS NN 
data agreed with SMOS level 2 data to within an uncertainty (standard deviation of the difference) of 
0.05 m3 m−3 over most of the globe. There are now plans to assimilate SMOS NN (trained on ECMWF 
LSM) operationally, together with ASCAT level 2. At NASA, a similar technique has been employed by 
Kolassa et al., (2017) to assimilate a version of the SMAP product derived from a neural network 
trained with the NASA land surface catchment model. An EnKF was used to assimilate the data into 
the LSM. The comparison with in-situ data showed a marginal improvement in SM scores when 
compared with the assimilation of SMAP level 2.  

NWP systems are generally moving towards greater coupling between the different components, 
including the land, atmosphere and oceans. In most NWP centres, the land surface DA is weakly 
coupled to the atmospheric DA. This implies that the analysis corrections in each component 
influence the other components through the short forecast between assimilation cycles. One way to 
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improve the flexibility and coupling between the systems is through ensemble DA. Currently, most 
leading NWP centres are not using ensemble DA methods to analyze SM. Ensemble DA is practical 
and effective in global analysis systems with very large model state dimensions, such as atmospheric 
NWP models (of the order 108 degrees of freedom), as it avoids the need to store or invert very large 
matrices for the Kalman gain computation. But land surface DA systems are not affected by the so 
called “curse of dimensionality”, as LSMs are typically pointwise and consist of between 3 and 10 
vertical layers, equating to model dimensions of the order 10 or less. An SEKF system is simpler to 
implement than an ensemble DA system as less calibration is required, and many offline studies 
have indicated similar levels of performance between the EKF and the EnKF methods (e.g. Reichle et 

al., 2002, Fairbairn et al., 2015). However, new opportunities are emerging for ensemble DA in 
coupled systems. Carrera et al. (2016) developed an operational EnKF for the Environment Canada 
land-surface model using an ensemble of precipitation forecasts from their NWP system to 
represent the uncertainty in the precipitation forcing. This was shown to improve the representation 
of uncertainty in the SM prior state pdf. At ECMWF, there are plans to replace the observation 
operator Jacobians of the SEKF with an ensemble of data assimilations (EDA) from the atmospheric 
analysis. This should enhance the flow-dependence of the DA system, while strengthening the land-
atmosphere coupling. 

The resolution of NWP systems will continue to increase in accordance with computing constraints. 
For example, the resolution of the operational NWP model at ECMWF has increased from 40 km in 
2006 to 9 km in 2017. Future resolutions of the order 5 km (NWP and ensemble systems) and 1 km 
(offline runs of the land surface model) should enable the better representation of small- scale 
processes such as convective precipitation and runoff patterns, which would particularly benefit 
agriculture and flood forecasting. Work is also underway to build the successor to ERA-land, namely 
the ERA5 reanalysis. This will have a 31 km resolution as opposed to the 79 km resolution for ERA-
land. It has already been released for a recent period (2010-present) and will be extended back to 
1979. This will take advantage of the current advanced land surface DA scheme at ECMWF to 
assimilate processed space borne scatterometer measurements since 1992. The ERA5 SM analysis 
will provide an enhanced benchmark with which to compare new and existing SM products. A similar 
type of reanalysis has been setup by NASA (MERRA-land) and provides SM maps from 1980 onwards 
(Reichle et al., 2011).  

 

Conclusions 

Over the last decade, the availability of remotely sensed SM measurements has massively increased 
with the launch of the MetOp, SMOS and SMAP satellite missions, with resolutions of about 25-50 
km. In particular, L-band measurements from the SMOS and SMAP missions are providing a wealth 
of new data that can be used to enhance SM maps and global analysis systems. It is important to 
validate this data to assess its accuracy and to highlight potential flaws that need to be addressed. 
Since the 1990s, in-situ SM observations have provided the most accurate and consistent reference 
for validation studies. In-situ measurements typically have uncertainty in the range 0.02-0.03 m3/m3, 
which is superior to the target uncertainty of the SMOS and SMAP satellite missions (0.04 m3/m3). 
The harmonization and standardization of the input data from the various networks of in-situ 
observations has been accomplished through the International Soil Moisture Network (ISMN) data 
hosting facility. Studies have gained insight into the uncertainty of SMOS, SMAP and ASCAT products 
by validating them against in-situ data in various parts of the world, with contrasting biomes and 
climate conditions. For example, it has become apparent that the SM derived from C-band ASCAT 
data is less accurate in highly vegetated regions. Regarding SMOS and SMAP, one of the main flaws 
is RFI, which originates from illegal anthropogenic L-band emissions. This has prevented useful SM 
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measurements in much of Asia and parts of Europe. A concerted effort has since been made to 
locate and switch off the RFI sources. Future satellite missions will focus on achieving higher 
resolutions and continuing the data time series. New techniques combining SAR data with 
radiometer or scatterometer data could potentially achieve resolutions below 10 km, although 
further validation is needed. 

In-situ observations are insufficient alone to validate SM products. Although accurate, they are 
sparsely located and missing completely from certain parts of the world, including the tropics and 
high latitudes. Complementary studies are used to check the consistency between different model 
simulations and datasets. In the absence of a clearly superior dataset that can be considered as a 
reference, the TC method has become a popular and effective technique to approximate the 
uncertainty in three different datasets, assuming they are uncorrelated with each other.  

High-quality reanalyses with complete coverage can also be used as a benchmark to assess the 
global uncertainty of new and existing SM products. For example, the ERA-land reanalysis at ECMWF 
has been used as a benchmark to assess the uncertainty of blended satellite products between 1980 
and 2010. Amongst other evidence, this has confirmed that combining satellite data from active and 
passive sensors enhances the resulting uncertainty of SM maps relative to individual sensors, which 
has led to the release of the ESA-CCI blended product (mapping from 1980 onwards). New SM 
reanalyses have been developed based on advanced DA systems, including ERA5 at ECMWF and 
MERRA-land at NASA.  

Global soil moisture analysis systems are evolving to assimilate new observation types. The fast 
retrieval of SM from L-band passive measurements using neural networks will enable the near-real-
time release of the SM products for operations. For example, ECMWF are planning to assimilate 
SMOS SM data derived from a neural network, in combination with the currently assimilated ASCAT-
derived SM. Ensemble DA systems are being advocated to increase the flow-dependence of 
estimated uncertainties in the prior state and to strengthen the land-atmosphere coupling. This 
should improve the uncertainty of the resulting SM analysis, together with increasing model 
resolutions.  
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7. Atmospheric Composition 
 

Background 

 

Some of today’s most important environmental concerns relate to the composition of the 

atmosphere. The increasing concentration of greenhouse gases and the cooling effect of aerosol are 

prominent drivers of a changing climate, but the extent of their impact is still uncertain. 

At the Earth’s surface, aerosols, ozone and other reactive gases such as nitrogen dioxide determine 

air quality, affecting human health and life expectancy, the health of ecosystems and the fabric of 

the built environment. Ozone distributions in the stratosphere influence the amount of ultraviolet 

radiation reaching the surface. Dust, sand, smoke and volcanic aerosols affect the safe operation of 

transport systems and the availability of power from solar generation, the formation of clouds and 

rainfall, and the remote sensing by satellite of land, ocean and atmosphere. 

To address these environmental concerns there is a growing requirement for observational data and 

processed information. Within Europe, the Copernicus Atmosphere Monitoring Service (CAMS) has 

been developed to meet these needs. 

CAMS delivers a range of operational services, including several which draw upon the operational 

analysis of air quality and atmospheric composition: 

• Daily production of near-real-time analyses and forecasts of global atmospheric composition 

• Daily production of near-real-time European air quality analyses and forecasts with a multi-

model ensemble system 

• Reanalyses providing consistent multi-annual global datasets of atmospheric composition and 

European air quality with a frozen model/assimilation system 

• Greenhouse gas surface flux inversions for CO2 , CH4 and N2O, allowing the monitoring of the 

evolution in time of these fluxes 

• Climate forcings from aerosols and long-lived (CO2 , CH4) and shorter-lived (stratospheric and 

tropospheric ozone) agents 

• Anthropogenic emissions for the global and European domains and global emissions from 

wildfires and biomass burning 

Regarding the measurement of atmospheric composition SO2, for example, has been measured from 

space since the 1982 eruption of El Chichón (Krueger, 1983; Krueger et al., 2008) using UV-VIS 

sensors. Those measurements were made by the Total Ozone Mapping Spectrometer (TOMS), which 

had a limited SO2 detection sensitivity, since the discrete measurement wavelengths were designed 

for total ozone retrieval (Gurevich and Krueger, 1997). Since then, next-generation space-borne 

spectrometers such as GOME (Global Ozone Monitoring Experiment), GOME-2, SCIAMACHY 

(SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) and OMI (Ozone 

Monitoring Instrument) have shown greatly improved SO2 detection sensitivity. 

Measurements of atmospheric methane from space have been made for the last two decades using 

both solar back-scattered radiation (e.g. SCIAMACHY and GOSAT) as well as thermal emission (IMG, 

AIRS, TES, IASI and CrIS). Missions based on active (lidar) techniques, as well as missions based on 

Geostationary satellites are currently under consideration (Jacob, 2016). In Europe, the planned Low 
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Earth Orbit satellite Senitinel-5, and the geostationary mission Sentinel-4, will target a range of key 

compounds including methane using solar backscatter in spectral ranges covering the UV from 

270nm to the short wave infrared at 2.385 µm. The Tropospheric Monitoring Instrument 

(TROPOMI), also measures solar backscattered radiation and is carried on the Copernicus Sentinel-5 

Precursor (-5P) mission, launched in October 2017. In addition to methane, TROPOMI also measures 

column ozone, nitrogen dioxide, methane, carbon monoxide, sulphur dioxide and formaldehyde (De 

Smedt, 2015). 

The accurate measurement of column CO2 has long been recognised as a key challenge in deriving 

anthropogenic and biogenic surface fluxes of CO2 (Kort, 2012). Dedicated CO2 monitoring missions 

have been launched in the last decade, using differential reflectance techniques in the shortwave 

infrared to derive accurate CO2 columns. These missions include GOSAT (Kuze, 2009 and 2016, 

Hammerling, 2012), TANSAT (Liu, 2013) and OCO-2 (Eldering, 2017).  

The growing importance of monitoring the impact of international protocols covering greenhouse 

gas emissions over the next century means that it is likely there will be strong and ongoing multi-

agency commitment to operate satellite systems measuring greenhouse gases, and atmospheric 

composition more generally, for the foreseeable future. 

 

Current Approaches to Cal/Val  

 

Calibration and validation activities have traditionally made use of colocations with high quality 

measurements, some of reference quality, at a limited number of ground-based sites. SO2 

measurements from space, for example, have been validated using colocations with Brewer 

spectrophotometers. Typical levels of agreement are ± 2 DU (Ialongo, 2015) 

Validation of the complete suite of CAMS products is carried out on an ongoing operational basis 

and validation reports are produced quarterly as part of the service (Eskes, 2017), drawing upon a 

wide range of reference datasets.8  

 

Global analysis systems 

 

Within CAMS a global analysis and forecasting system is run at a resolution of 40 km (T511) with 60 

levels in the vertical. The system is integrated within the Integrated Forecasting System (IFS), a 

system originally developed as a Numerical Weather Prediction (NWP) model at ECMWF. The system 

generates forecast output at 3-hourly intervals, and incorporates treatment of a range of 

greenhouse gases, reactive gases and aerosols. A range of satellite observations are assimilated in 

the CAMS models: O3 analyses are determined by observations from MLS, OMI, SBUV-2, OMPS and 

GOME-2; CO is constrained by observations from IASI and MOPPITT (Emmons, 2002, and Yurganov, 

2008); SO2 from GOME-2; and aerosol optical depth (AOD) observations from PMAP and MODIS are 

assimilated.  

The greenhouse gas modules account for biogenic (Bousetta, 2013) and anthropogenic fluxes, ocean 

fluxes and fire related fluxes. CH4 fluxes are prescribed from inventories and climatological datasets. 

                                                           
8
 See https://atmosphere.copernicus.eu/quarterly_validation_reports.  
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Reactive gases are treated by an extended version of the CB05 chemical scheme (Yarwood, 2005). 

The assimilation of aerosol optical depth data is described in Benedetti (2008).  

 

Evolution of global analysis systems 

 

Within Europe, as part of the operational CAMS service, the ongoing development of composition 

analysis and forecasting capability is anticipated for the foreseeable future. In the short term future 

there are plans to extend the assimilation of observations to include those from: the Sentinel-5P 

TROPOMI mission (O3, NO2, SO2, CH4 and CO); IASI (O3); VIIRS (AOD and fire radiative power); and 

SEVIRI (AOD). In the longer term it is likely that the system will see continuous improvements in 

accuracy through: model developments in both analysis and forecasting aspects; higher resolution, 

enabled through advances in computing power; as well as the continued development and 

expansion of the observing system through significant contributions from all major satellite agencies.  

It is likely that the system, or a similar system, will be further developed to support the operational 

estimation of regional anthropogenic CO2 emission fluxes in support of international protocols aimed 

at monitoring and curbing greenhouse gas emissions. A key component of such systems will be the 

assimilation of observations from satellite sensors such as TANSAT and OCO-2 and future 

generations of similar instruments.  

 

Reference Observation Networks 

 

Several ground-based networks have been established in recent years to provide reference quality 

measurements, primarily aimed at the validation of space-based remote sensing measurements of 

atmospheric composition. The Network for the Detection of Atmospheric and Climate Change 

(NDACC, De Mazière, 2017), for example, comprises eighty sites equipped with a suite of 

complementary in-situ and remote sensing instruments including ozone sondes, Brewer, Dobson 

and UV-VIS spectrophotometers, microwave radiometers, Fourier Transform Infrared Spectrometers 

and Lidars. The quality of the observations is ensured through a refined set of measurement 

protocols and procedures, including regular inter-comparison campaigns. Due to its maturity, NDACC 

is among the networks that are recognized by the European Copernicus initiative as key networks for 

providing data for validation of the Copernicus Atmosphere Monitoring Service.  

The Total Column Carbon Observing Network (TCCON) network fulfils a similar role for the 

monitoring of total column CO2 and comprises network of high resolution Fourier Transform Infrared 

Spectrometers operating in the short wave infrared. (http://www.tccon.caltech.edu/index.html) 

In the context of aerosol measurements, an analogous role is played by the AERONET (AErosol 

RObotic NETwork) project – a federation of ground-based remote sensing aerosol networks 

established by NASA and PHOTONS (PHOtométrie pour le Traitement Opérationnel de Normalisation 

Satellitaire) and augmented by other national networks. The project has provided a long-term, 

continuous and readily accessible public domain database of aerosol optical, microphysical and 

radiative properties for aerosol research and characterization, and for the validation of satellite 

observations for the last 25 years. In common with NDACC, the network imposes a standardization 

of instruments, calibration procedures, processing and distribution. 
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Validation of the complete suite of CAMS products is carried out on an ongoing operational basis 

and validation reports are produced quarterly as part of the service (Eskes, 2017), drawing upon a 

wide range of reference datasets.9  

 

Conclusions 

 

As outlined above, all of the key elements required to enable global analyses to be used as a 

component of the future validation of satellite observations of atmospheric composition are already 

in place, specifically:  

• mature networks of reference quality ground-based observations (NDACC, TCCON, 

AERONET); 

• sophisticated global analysis systems (e.g. in Europe, the IFS);  

• assured evolution of those analysis systems;  

• and a steadily growing constellation of satellite instruments targeting composition 

measurements.  

 

Work is already ongoing to assess the value of global analyses in the validation of satellite data, and 

this approach is likely to become more widely used as analysis systems improve.  

 

 

 

  

                                                           
9
 https://atmosphere.copernicus.eu/quarterly_validation_reports  
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