GAIA-CLIM deliverable D5.3

Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring

WP5: Creation of a "virtual observatory" visualization and data access facility

D5.3: "Technological platform for collocation database".

A Horizon 2020 project;

Grant agreement: 640276

Date: 20 February 2017

Lead Beneficiary: EUMETSAT

Nature: Other

Dissemination level: PU

Work-package	WP5 (Creation of a "virtual observatory" visualization and data access facility)
Deliverable	D5.3
Nature	Other
Dissemination	PU
Lead Beneficiary	EUMETSAT
Date	28/02/2017
Status	Final
Authors	Arndt Meier (EUMETSAT), Kalev Rannat (TUT), Marie Doutriaux- Boucher (EUMETSAT), Hannes Keernik (TUT), Jacques Descloitres (ICARE), Kuldar Taveter (TUT), Jörg Schulz (EUMETSAT)
Editors	
Reviewers	Peter Thorne (NUIM), Richard Davy (NERSC), Corinne Voces (NUIM)
Contacts	Arndt.Meier@eumetsat.int, Joerg.Schulz@eumetsat.int
URL	http://www.gaia-clim.eu

This document has been produced in the context of the GAIA-CLIM project. The research leading to these results has received funding from the European Union's Horizon 2020 Programme under grant agreement n° 640276. All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is merely representing the authors' view

Table of Contents

[1]	Introduction	5
[2]	Outline of Deliverable 5.3	6
[3]	Design of the Virtual Observatory (VO)	6
[4] Syi	Synergies with our EU sister projects FIDUCEO and QA4ECV nergy with QA4ECV	
-	nergy with FIDUCEO	
[5]	Summary and recommendations	11
Gloss	sary	12
APPE	NDIX A: The Virtual Observatory and Tutorials on the internet	13
APPE	NDIX B: Action items resulting from 2 nd user workshop	14

[1] Introduction

The objectives of this work package are:

- Creation of a collocation database for satellite and reference measurements including NWP model-based (re)analyses.
- Creation of data interrogation and visualization tools building upon existing European and global infrastructure capabilities.
- Evaluation of the resulting Virtual Observatory to demonstrate its utility for scientific/statistical analysis of respective observations, performance characteristics and the monitoring of instrument and product behaviour over time.
- Provision of a transition roadmap for the Virtual Observatory (including outputs from WP1 through WP4) from research to operational status enabling operational use in Copernicus services.

The main deliverable of WP5 is the Virtual Observatory (VO) facility which will enable users to carry out comparisons of satellite data products to non-satellite reference-quality data. A range of visualisation and analysis tools are to be developed to enable users to explore, analyse, and interact with the data provided within the VO. The Virtual Observatory is built to showcase potential methods by which the underlying scientific advances in WPs 1 through 4 can be made available to a larger user community. It is built in such a way that it could subsequently become an operational service, e.g., as part of the Copernicus services. However, the implementation supported within the GAIA-CLIM project remit shall only serve as a proof-of-concept for an operational VO facility.

Work Package 5 partners are EUMETSAT (lead), Tallinn University of Technology (TUT), and ICARE (University of Lille) with in kind contributions from NOAA in particular with respect to radiosonde processing concepts and data serving. In addition, substantial contributions have been made by many other GAIA-CLIM project partners in the form of software, actual GAIA-CLIM deliverables as well as discussion and support. Work Package 5 integrates and serves the data and products developed in the underlying work packages. Noteworthy contributions from underlying work packages are:

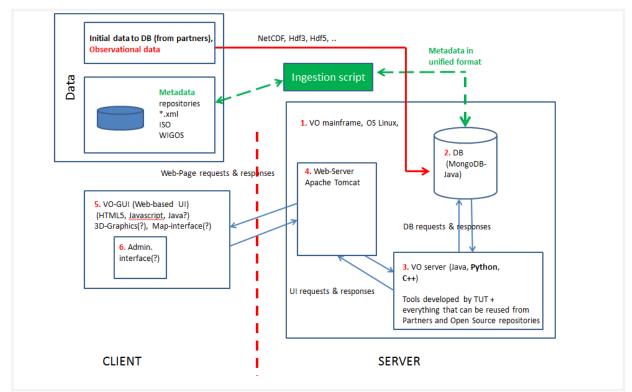
- the metadata database and the CESIUM visualisation tool (WP1 lead CNR),
- error traceability diagrams, measurement system questionnaires, and reference product readiness (WP2 lead BKS),
- Look-up tables for collocation mismatch and smoothing errors derived with OSSSMOSE (WP3 lead BIRA-IASB), and
- the GRUAN processor (WP4 lead UK MetOffice).

[2] Outline of Deliverable 5.3

The "Virtual Observatory" visualization and data access facility, or VO for short, is essentially a functional piece of software with an underlying database which is accessible through the internet. Therefore, this document is only a short description explaining where to find and how to access this online deliverable and putting it into context of other relevant deliverables of the project.

The VO distinguishes itself from existing web portals serving EO data with respect to:

- The traceability of the uncertainties throughout the processing, that is to say that the reporting of uncertainties is complete and each component can be traced back to metrological standards. Further, the collocations include a comprehensive uncertainty budget, i.e. both measurement and collocation uncertainties;
- Comparison of reference data with satellite observations at both level 1 (realised using Radiative Transfer forward modelling) and level 2;
- The provision of a standardised framework that allows users to compare any two observational products that participate, meaning that several independent reference data sets can be compared to data products originating from multiple satellite sensors and/or algorithms for any chosen ECV.


In addition to this short description four video tutorials have been created that explain in detail the present functionality of the VO and should enable a user to reproduce the examples shown and to create queries of his or her own.

The URL of a live demonstration of the VO and the aforementioned video tutorials are listed in Appendix A.

[3] Design of the Virtual Observatory (VO)

The technical design of the VO is based on user requirements derived from the user survey and two user workshops. The user survey confirmed many assumptions made in the proposal, in particular core functionalities such as comparison of data sets, radiative transfer capability, selection tools for data and data formats. A new requirement from the survey is the usage for comparison of reference measurements with climate model data, which will not be implemented within GAIA-CLIM, due to resource limitations, but will be kept as a potential extension towards a climate service usage of the VO in Copernicus.

The technical design specification of the VO has been finalised and the different elements are being implemented. Figure 1 represents the architecture of the VO, consisting of a front end (client) and the back end (server). The co-location data base and the repository of tools belong to the back end, whereas the Graphical User Interface activities (developed under Task 5.2) belong to the front end.

Figure 1: Sketch of the VO architecture – Client (as VO GUI), Server with DB, Web-Server and Server Software supporting the VO and GUI functionalities

The deliverable D5.3 is largely based on Tasks 5.1 and 5.2. The collocation database for satellite and reference measurements is created in Task 5.1 while Task 5.2 creates the graphical user interface and online tools.

Task 5.1 was mostly concerned with the creation of a co-location database of reference quality non-satellite measurements and satellite measurements. The central database has been implemented as a modern object-oriented non-SQL database and the choice has been the open source product MongoDB (mongodb.org). MongoDB was chosen over traditional databases like MySQL, PostgreSQL or OracleDB, because the object oriented approach does not require defining the layout of the database in advance, and the layout and data structure can thus be modified as needed in future in an extendable and seamless manner without the need to convert existing records to the new format each time. This object oriented approach is of great advantage as not all required fields are known at this stage of the project and we anticipate that different future observational data will have slightly different needs, and hence these anticipated changes in data structures will not cause problems. Besides, MongoDB is a mature product with the biggest user base (68 million) amongst the non-SQL type databases, does not entail any licensing costs, is scalable, and works seamlessly across all major operating systems.

The collocation software for the VO benefits from existing tools, (e.g. the EUMETSAT Space Time Angle Matchup Procedure (STAMP) software for co-locations and NOAA NPROVS software suite) and web-based data extraction and visualisation tools (ICARE, <u>http://www.icare.univ-lille1.fr/extract/</u>). It will expand the capabilities of STAMP from satellite-

satellite to satellite-non-satellite measurement comparison, and it will provide more refined data selection tools (e.g. the size of the time window and the radius for a co-location as well as selected metadata and combined measurement uncertainty criteria) in addition to more advanced products, as all combined uncertainty information is included.

Data Base Population Status

The development server for creating the GUI specified in Appendix A holds only small samples of the metadata and of the observational data. The full metadata database is currently held on an internal server at CNR with no public access and the same is true for the observational and collocation database (EUMETSAT/TUT) where ingestion is still at an early stage.

Sample observational data has been ingested into the VO database and been provided to partners at TUT who are implementing the GUI and data visualisation capabilities. These include water vapour profiles from GRUAN radiosondes matching Level 1 and 2 satellite data where the latter has been produced using the GRUAN processor delivered by WP4. In addition, sample ozone observations from NDACC DOAS and FTIR have been ingested into the VO data base.

ICARE has consolidated satellite aerosol data set provision and support including data access tools in anticipation of their future inclusion into the VO database. Although aerosol data sets are not among the pilot data sets being explored during the construction of the VO software, the objective is to include aerosol data sets during 2017.

Feed-back from 2nd user workshop

At the second user workshop in Brussels in November 2016 a preview version of the VO was presented. A lot of useful feedback was collected from users at this opportunity in the form of a wish-list that we converted into a to-do list with specific technical action items. A copy of this document is given in Appendix B and provides important guidance in further GUI development and bug-fixing.

Graphical User Interface (GUI)

The subtask of creating the GUI is lead by TUT with contributions from EUMETSAT, ICARE, NOAA, BIRA, and USTL. A snapshot of the current status of the ongoing task of creating the graphical user interface and user tools which form the front end of the VO can be seen in the live version of the development server and in the video tutorials. The GUI is subject of the next deliverable (D5.4) of work package 5.

A roadmap exists for the further development of the GUI that incorporates the feedback from the 2nd user workshop (see Appendix B for details). Valuable feedback is also expected from the outreach programme that is replacing the 3rd user workshop. However, some flexibility does exist in the roadmap and some decisions have been deferred to a later stage so we can continue to involve the users, but for some questions, more functionality needs to be in place before we and the users can take some of the remaining decisions.

[4] Synergies with our EU sister projects FIDUCEO and QA4ECV

Possible bilateral synergies between GAIA-CLIM, FIDUCEO and QA4ECV projects were discussed with a focus on the web delivery, data streams, data bases, GUI, GUI functionality, data formats, naming conventions, error visualisation and related topics. WP5 key strategists discussed with Thomas Block from Brockmann Consult (FIDUCEO) during the joint GAIA-CLIM FIDUCEO Meeting on the 2nd of February 2017 and with Sander Niejmeier from stcorp.nl (QA4ECV) during the QA4ECV GA on the 22nd of February 2017.

Synergy with QA4ECV

Where possible, synergies aspects between QA4ECV and GAIA-CLIM have been identified and close collaborations was agreed:

- Both projects are agreed on using netCDF as the principal data format for observational data as well as for any derived products;
- Both projects follow the principle of using user requirements as the driver for what is implemented and how;
- QA4ECV has developed a harmonised naming convention system implemented as netCDF fields that GAIA-CLIM is happy to adopt;
- QA4ECV uses an abstraction layer of "vertical dimension" to avoid early individual handling of pressure and altitude schemes. This is an elegant approach and GAIA-CLIM wants to adopt this;
- QA4ECV has standard tools for unit conversions (e.g. from ozone number density, or volume mixing ratio to concentrations etc) that GAIA-CLIM is happy to implement in the same way;
- A lot of mundane but important tools like interpolation of vertical profiles onto a common grid (altitude levels, pressure levels, different vertical resolutions etc) are handled through the BEAT/HARP and file IO through the BEAT/CODA packages within QA4ECV (<u>http://www.stcorp.nl/beat/</u>). GAIA-CLIM had been exploring this route independently (see demonstration given with BEAT/VISAN at the 2nd user workshop) and GAIA-CLIM feels encouraged to further embark on that road. However, unlike

QA4ECV,GAIA-CLIM is offering more control over interpolation schemes to the user, which will make GAIA-CLIM interface different, but not the underlying interpolation algorithm. It is also noteworthy that stcorp.nl is the author of the BEAT packages and GAIA-CLIM may get better support through this informal collaboration.

• We aim to have full interoperability of product files.

The two projects developed different data handling systems. QA4ECV processes big amounts of data that are all processed in one agreed way and it leaves very little control to the user on selection, processing and filtering criteria, which is very different to the GAIA-CLIM position. GAIA-CLIM searches through huge satellite data archives to match high-quality reference quality observations. However, unlike QA4ECV, the latter are comparatively small in number, which is why we put the search results into a database together with comprehensive NWP auxiliary data and then offer to the user very high control over the exact nature of collocation criteria and post-processing according to user specifications. Working file-based as opposed to database-oriented is a natural choice for QA4ECV and it would be highly impractical if not worthless to use a database. Also, given the fact that both projects have only one year left, there is insufficient time and resources left to look for a common solution for both projects in this fundamentally different approach.

Synergy with FIDUCEO

The common FIDUCEO GAIA-CLIM day in February 2017 further solidified the already existing good collaboration between the two projects clearly setting out goals. In particular, the scientific question of water vapour uncertainty budget closure has raised much interest in both projects at EUMETSAT.

On the level of the VO and its backend, the collaboration details may be less well known. Common functionality between FIDUCEO and GAIA-CLIM are:

- Same database system: Mongo DB
- Same satellite data archive
- Same access tools
- Same underlying Linux system that was custom built by GAIA-CLIM.
- Same software for identifying collocations (STAMP).
- Principal data format for derived data sets is netCDF.

During the meeting with Thomas Block from FIDUCEO, discussion about data collocation took place. FIDUCEO is using a very efficient algorithms for faster collocation matching that is based on the google-s2 library that essentially converts all latitude/longitude floating value pairs into an integer based lookup table that uses much less resource and thus is much faster. Although the speed of STAMP has not been an issue for GAIA-CLIM so far this collocation tool may be checked out nonetheless.

FIDUCEO is not planning on any data visualisation, so there is no synergy for the VO GUI. However, given the interoperability of the backend and the close collaboration on the water vapour uncertainty budget closure, results from FIDUCEO would be extremely easy to make available through the VO platform should one wish to do so in the future.

[5] Summary and recommendations

A Technological platform for the collocation database has been created and delivered in agreement with the plans set out in the GAIA-CLIM project plan. We have a well designed and well implemented backend. The metadata database from WP1, which originally had been thought of as a stand-alone product, has been fully integrated into the VO. This eliminates potential inconsistencies between observational data and corresponding metadata and presents to the user in a one-stop-shop experience thus excelling the original project plans. This has only been possible through the excellent collaboration with WP1 who did most of the hard work on this feature.

All basic functionality promised for this deliverable has been delivered and the interactive GUI and is usable. 2D-plots are implemented for a number of different reference products. Video tutorials have been produced that fully guide new users. However, we will have to keep up a fast pace to get a lot more functionality, in particular around collocated data sets, into place before the submission of D5.4.

We plan to update the GAIA-CLIM community regularly on VO progress and invite them and previous test users to try new features and provide feedback on their experiences so GAIA-CLIM VO developers can use this information to continue building the best possible VO for our users within the given resources. We also expect the outreach programme that is replacing the 3rd user workshop to provide important feedback that will improve the usability and relevance of the VO and also helps to create D5.8 (Transition roadmap for the VO) that will take up all feedback. Also, GAIA-CLIM will keep close contacts with the FIDUCEO and QA4ECV projects to support a comprehensive as possible transition of results from FP7 and H2020 research projects into Copernicus Services.

Glossary

BEAT	Basic ENVISAT Atmospheric Toolbox
CESIUM	Cross-platform virtual globe for dynamic-data visualisation in the space and defense industries
CODA	Common Data Access toolbox
DOAS	Differential Optical Absorption Spectroscopy
ECV	Environmental Climate Variable
EO	Earth Observation
FIDUCEO	Fidelity and Uncertainty in climate data records from Earth Observations
FTIR	Fourier Transform Infrared Spectroscopy
GRUAN	GCOS Reference Upper-Air Network
GUI	Graphical User Interface
ISO	International Standard Office
NetCDF	Network Common Data Form
NDACC	Network for Detection of Atmospheric Composition Change
NPROVS	NOAA Products Validation System
QA4ECV	Quality Assurance for Essential Climate Variables
STAMP	Space Time Angle Match-up Procedure
VO	The Virtual Observatory of GAIA-CLIM
WMO	World Meteorological Organization

APPENDIX A: The Virtual Observatory and Tutorials on the internet

The development server is presently located on a small server at TUT:

http://193.40.13.83/vo/main.html

After clicking on the central puzzle piece labelled "VO" one enters the interactive area of the VO:

http://193.40.13.83/vo/index.html

https://youtu.be/Qt4edW3A8hc GAIA-CLIM.eu tutorial part 1: Introduction

Tutorial part 1 (Introduction): The Virtual Observatory of the GAIA-CLIM project <u>http://www.gaia-clim.eu</u>

https://youtu.be/VwJCzeIAKul GAIA-CLIM.eu tutorial part 2: Satellite imagery

Tutorial part 2 (Satellite Imagery): The Virtual Observatory of the GAIA-CLIM project http://www.gaia-clim.eu

https://youtu.be/OeshL9IVTKc GAIA-CLIM.eu tutorial part 3: Metadata

Tutorial part 3 (Metadata): The Virtual Observatory of the GAIA-CLIM project http://www.gaia-clim.eu

https://youtu.be/MKj0Y00KqMY GAIA-CLIM.eu tutorial part 4: Observational Data

Tutorial part 4 (observational data): The Virtual Observatory of the GAIA-CLIM project <u>http://www.gaia-clim.eu</u>

Tags: Earth Observation, Climate Monitoring, Satellite Validation, Meteorology, GAIA-CLIM

APPENDIX B: Action items resulting from 2nd user workshop

At the 2nd user workshop in Brussels in November 2016 an early preview version of the VO was presented. A lot of useful feed-back was collected and converted into a to-do list with specific technical action items. A copy of this document is given here.

 Table B1: VO action items – details.
 keys:
 A)
 Priority:
 1=high,
 2=normal,
 3=low
 B)
 People:
 AM=Arndt

 Meier, HK=Hannes Keernik, NL=Neeme Loorits, NN=to be decided later, tut=TUT to decide on a TUT staff
 including the new staff planned C)
 When ready: months since the start of the project.

				Owner/	When	Status /
Item	Priority	Task	Difficulty	assignee	ready	comment
		Collocation algorithm	a little			implemented,
		working for ingestion	more			currently being
1	1		work	AM	22	tested
		ingestion of selected				
		collocated data sets				
		(GRUAN sondes plus one				
		ozone set)				
2	1		normal	AM+HK	23	
		Adding NWP fields to				
		collocated data sets -				
		including access to/data				
		transfer from NWP data	a little			
		centers	more			
3	1		work	AM	23	
		In the data selection area				
		when in observational data				
		mode, "Data Selection and				
		management area" the				
		first selection should be				
		the "ECV - Essential				
		climate variable" - here we				
		list Aerosols, water				
		vapour/humidity,				
		temperature, Brightness				
		temperature, ozone for a				
		start - perhaps in				
		alphabetical order.				
4	1		normal		22	fixed
		The second selector should				
		be the "Reference				
		Network/Observational				
		Platform" where we have				
		GRUAN radiosondes,				
		Processed GRUAN				
5	1	radiosondes (BT),	normal		22	fixed

			1		1	1
		EARLINET Aerosol LIDAR,				
		NDACC FTIR, NDACC ECC				
		ozone sondes, NDACC				
		uvvis/DOAS, EUBREWNWT				
		Brewer, NDACC				
		Dobson/Brewer for a start.				
		3rd selection area				
		"Include/show model				
		data" tickboxes for "UK				
		MetOffice NWP", "ECMWF				
		NWP" (others may follow				
		later)		depends on		
6	1		normal	items 2 & 3	22	
		4th selection - dynamic list				
		with tick boxes "Satellite				
		sensor" according to				
		separate table on Sheet 2.				
		The ECV is always the				
		same as in the first drop				
		box (by definition), so here				
		goes the name of the				
		instrument or derived				
		product, e.g. IASI/MetopA				
		or GEWEX analysis etc.				
		However, for now this is a				
		dummy field until you get				
		collocation data from me.		depends on		
7	1	5th selection area -	normal	items 2 & 3	22	
		dynamic list with tick boxes: "Location				
		Reference Instrument" to				
		be queried from database;				
		would result in				
		"Lindenberg" (and soon				
		many more) for				
8	1	radiosondes.	normal	??	22	
	-	5th selection area: Start				
		time / End time				
9	2	-,	easy		22	fixed
		we will possibly dream up				
		more like "pool latitude				
		bands"				
10	3		normal	??	26	
						it is better than
		review the page layout, in				before. I would
		particular when plotting				make the
		observational data				selection area
11	1		normal		22	for the

						observational
						data (to the left)
						about 25% less
						wide giving the
						extra space to
						the plotting.
						not fixed, when
						plotting ECC
						ozone sonde,
						default is
		default y-axis: altitude in				pressure on y-
		[m]. Selectable alternative:				axis but should
		pressure in [hPa] (==mbar)				be altitude in m.
12	1		normal		22	be altitude in m.
	-	show the total number of	liorniai			
		observational data records				
		that match each selection				
		(level) - see NORS server				
		for illustration http://nors-				
		server.aeronomie.be/repo	a little			
12	1	rt/	more	something done	22	fixed
13	1	Dron down	work	done	22	fixed
		Drop-down boxes/Selections should				
		only list those alternatives				
		that make sense in the				
		context and as a result of				
		selection choices already				
		made. E.g. a radiosonde				
		does not have extinction				partly fixed, may
		coefficients. Perhaps	a little	?i think i		need some
		Hannes to guide Inna?	more	have it done		refining
14	1	Questions to Arndt?	work		23	
		When choosing a new				
		parameter the output lists				
		should be				
		flushed/refreshed				
15	1		easy		22	fixed
		Reset button to reset all				
		selections and clear all				
		data records				
16	1		easy		22	fixed
		Currently it is not possible				I still cannot BT
		Currently it is not possible to plot Brightness				is not a vertical
		Temperature (e.g. from				profile, it is not
		gruan processed sonde or				plotted against
		NWP model) versus				altitude or
		Channel. (Not meaningful				pressure but
		to plot against altitude or				channel
17	1!!	pressure)	easy		22	
18	1	For NDACC ozone sondes I	easy		22	Partly fixed, I can

					1	
		was able to print a				now plot ozone
		temperature profile and				concentration vs.
		corresponding				pressure, but not versus altitude.
		uncertainties. However, I				2nd drawing
		was not able to				area still missing.
		plot ozone concentrations				area still missing.
		correctly. Besides, there is				
		no 2nd drawing area for				
		e.g. uncertainty profiles.				
		plotting the gruan				
		processed radiosonde				
		Brightness Temperature				
		versus channels. Note that				
		this should be a bar graph,		there are no		
		not a line graph, with		Channels in		
		channel as the x-axis.		the tabase		
19	1		normal		22	
		For EARLINET Lidar I was				
		able to plot an extinction				
		coefficient profile (see		yeah,		
		attachment). Very good. A		because for		
		backscatter plot is created,		backscatter		
		but there is no curve / data		no data in		
		visible in the plot.		database		
20	2		normal		22	
		Metadata map				
		projections: The selection				
		of an area is cumbersome -				
		even reducing the shapes		do not		
		to just one could be		understand		
		acceptable to make this		what is		
		really sleek.		wrong		
21	2	, 	normal	Ľ Š	24	
		If displaying multiple				
		networks on a map they				
		should have different		randomized		
		colours		markers of 4		
22	3		easy	colours	24	fixed
		Multiple choice of				
		networks, stations and				
		parameters should be				
	_	possible		ok in		
23	2		normal	metadata	24	fixed
		Locations belonging to				
		more than one network				
		should display all available				
		metadata and have a kind				
		of 'super site' or mulitple		randomized		
		colours		markers of 4		
24	3		normal	colours	24	

		conversion of volume				
		mixing ratios into				
		concentrations and vice				
		versa (e.g. for ozone and				
		other trace gases, requires				
		pressure and temperature				
		profile) or between				
		relative and specific				
		humidity and water vapour	a little			
		volume mixing ratios.	more			
25	3		work		24	
		show the maturity matrix				
		for selected network or				
		site (when requsted by				
		user)				
26	2		easy	??	23	
		plotting of time series - for				
		scalars like total columns	a little			
		(not profile data)	more			
27	2		work		23	
		plotting of time series -				
		scroll and/or animate				
		through a stack of profile	a little			
		data	more			
28	2		work		23	
		Collocation criteria:				
		Distance (editable number				
		field in units of km, default				
		200)				
29	2		normal		23	
		Collocation criteria: Time				
		difference (editable				
		number field in units of				
		minutes, default 120)				
30	2		normal		23	
		world map: the zooming				
		out should not go further				
		than 'one earth map', at				
		the moment still 2 x the				
		Earth can appear				
31	2		easy		22	fixed
		When going to the entry				
		page of the VO (see				
		screenshot) the				
		background image is often				
		bigger than the area in the				
		browser. We do need a				
		scroll bar in that case. Or if				
		we want to go fancy, scale				
		it down to fit the available				
32	2	area (with some lower	easy		22	
52	-		cusy		L ~ ~	

		limit perhaps).				
		initi perilapsj.				
		Pressure when used in				
		plotting should be shown				
		in hPa instead of mbar or				
		other no matter what the				
		input				
33	2		easy		27	fixed
		User should be able to				
		save the search result and				
		to reload at later session				
34	3	Ontional supert of	normal		27	
		Optional export of				
		selected observational				
35	3	data, initially as netCdf.	normal		24	
55	5	hdf5 export of	normal		24	
		observational data				
36	2		normal		26	
		visualisation of averaging				
		kernels for FTIR & TCCON				
		profiles				
37	3		complex		27	
		3d visualisation of				
		sampling footprints	very			
38	3		complex		29	
		in the graph menu: user				
		selection of line thickness				
		and line colour for the				
20	2	graphs			24	
39	3	in the graph menu:	normal		24	
		Radiobutton for: show				
		corresponding or chosen				
		errors as - envelope -				
40	3	errorbars - none	normal		24	
		Display of uncertainty can			r	
		be done in extra plot as				
		now or as envelop on				
		profiles. Small				
		uncertainties may become				
		hardly visible in the				
		envelope case. A zoom				
41	3	function would help with that	normal		29	
		in the graph menu: drop			23	
		down list for type-of-error:				
		- total - statistical -				
		systematic - followed by a				
		list of all other errors				
		related to the data shown				
42	3		normal		24	
·	•					

	1			1	
		in the graph menu:			
		selection of colour bar			
		code in case colour			
		represents a value (e.g.			
		when plotting total			
		amounts of ozone on a			
		map using colour to show			
		the amount of ozone)			
43	3		normal	24	
		Collocation criteria:			
		Transport Corrected			
		Distance (editable number			
		field in units of km, default			
		200) - put in in grey, to be			
		activated once Arndt has			
		the formulae for it			
44	3		complex	26	
		Collocation criteria:			
		uncertainty based, k values			
		less than x (editable			
		number field, unitless,			
		default 2) - put in in grey,			
		to be activated once Arndt			
		has the formulae for it			
45	3		complex	26	
		Profile graphics could			
		include a small map to see			
		where the station is			
46	3	location of motodata bling	normal	29	
		location of metadata blips			
		off by 5 deg. Latitude (at			
		times) when moving the			
47	3	тар	0261		
47	5	When plotting 'obs.Data'	easy		
		=> 'Satellite Image' it can			
		take a long time to load			
		and display the image. The			
		user needs to get an			
		indication whether a data			
		record was found and is			
		being loaded or whether			
		'no data' was found.			
		Perhaps a display field			
		near the 'reguest data'			
		button is needed, flashing			
		slowly, saying either 'no			
		matching data found' or			
		'data found. loading' that			
48	2	stops flashing and is being	easy	25	

	1			1	1
		reset to an empty field as			
		soon as the user either			
		starts editing any of the			
		selection criteria fields or			
		when the image has			
		finished loading.			
		When plotting 'obs.Data'			
		=> 'Satellite Image' and			
		specifying a "Region of			
		interest" results in no data			
		being plotted at all /			
		nothing happens after			
		hitting "Request data".			
		Perhaps this functionality			
		has not been implemented			
		yet and this feature being			
		a placeholder only?			
49	3		normal	30	
		When plotting 'obs.Data'			
		=> 'Satellite Image' and			
		specifying a "Region of			
		interest", the available			
		entry fields should change			
		to "Latitude (North			
		positive)", "Height in			
		degrees", "Longitude			
		(West positive)", "Width			
		(in degrees).			
50	2		easy	27	