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Executive summary 
 

GAIA-CLIM, a H2020 project funded by the European Commission, aims to support Europe’s Earth 

Observation programme Copernicus by assessing and improving the fitness-for-purpose of sub-orbital 

(ground- and balloon-based) reference measurements in the validation of observational data sets 

from satellites. In particular, the project aims at improved traceability and uncertainty 

characterization, of the individual sub-orbital measurement systems and of the comparison with 

satellite data. 

A key issue in the geophysical validation of satellite data sets with respect to sub-orbital reference 

measurements is the interpretation of their differences in terms of known, quantified, uncertainties. 

This aspect includes not only the measurement uncertainties associated with the individual 

measurements, but also the additional uncertainties that appear when comparing different 

perceptions of the inhomogeneous and variable atmosphere, that is, when comparing data sets 

characterized with different sampling and smoothing properties, both in space and time. Those 

“comparison uncertainties” are the main topic of investigation for GAIA-CLIM Work Package 3.  

Deliverable 3.2 (D3.2) describes the concept of co-location mismatch, and how the resulting 

uncertainties can be decomposed and quantified through a careful metrological analysis of the 

measurements and their comparison. It also provides an overview of available methods to quantify 

these uncertainties so that they can be taken into account when interpreting the results of a data 

comparison, for example like in data validation and in data assimilation. 

The present GAIA-CLIM deliverable 3.4 (D3.4) elaborates further on the quantification of co-location 

mismatch detailed in D3.2 and applies statistically-based and model-based approaches to several case 

studies carried out on the Essential Climate Variables (ECVs) targeted within GAIA-CLIM: 

 Sections 3 and 4 address two meteorological profile variables: temperature and humidity. In 

particular, Section 3 discuss IASI, RAOB and GRUAN comparisons which are analyzed using 

advanced statistical methods developed by UNIBG and CNR. Moreover, Section 4 summarises 

the sonde intercomparisons as performed by NPL. 

 Section 5 addresses ozone. Here BIRA-IASB presents the OSSSMOSE results on ozone profile 

comparisons, considering ozonesondes, micro-wave radiometers and LIDAR. 

 Sections 6 and 7 address aerosols. In particular, in Section 6 it is reported the comparisons of 

AERONET vs AATSR, which is developed by FMI. Eventually, in Section 7, the comparison of 

EARLINET vs CALIPSO is developed by UNIBG and CNR. 
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1 Introduction 
 
High-quality observational datasets from satellites constitute a key component of the European 
Commission’s Copernicus programme, which aims at providing users (mainly policy makers and public 
authorities) with reliable and up-to-date information related to environmental and security issues. 
The climate change and atmosphere monitoring services in particular rely heavily on observations 
from current and future satellite instruments measuring both key meteorological variables such as 
temperature and humidity, and atmospheric composition, including greenhouse gases and health-
endangering pollutants.  

For these services to be reliable and effective, it is a prerequisite that the underlying datasets are fit-
for-purpose, i.e. that their quality is assured and that they meet user requirements. Quality assurance 
in the context of satellite remote sensing has been defined in the context of the CEOS- and GEO-
endorsed Quality Assurance for Earth Observation (QA4EO) framework, as the need for fully traceable 
Quality Indicators. In practice, the extent to which the satellite measurements agree with ground-
based reference measurements is an essential such quality indicator. Clearly, this agreement needs to 
be assessed in the context of the reported uncertainties, both those on the satellite and on the 
reference measurements. As such, traceability of the data production and of the associated 
uncertainties is another crucial quality indicator. The H2020 project GAIA-CLIM aims specifically at 
improving the traceability and uncertainty characterization of the sub-orbital reference 
measurements used to assess the quality of the satellite data sets. Moreover, it also addresses the 
uncertainty budget of these crucial satellite-to-reference comparisons from which several quality 
indicators are derived, but which require careful consideration of the additional errors due to co-
location mismatch, i.e. the unavoidable differences in measurement times, locations and 
spatiotemporal smoothing.  

1.1 Context and aims of this document 
 

Two key scientific objectives of GAIA-CLIM concern the uncertainties on sub-orbital reference 
measurements. In addition, uncertainties related to the intercomparison of measurements from 
different instruments and obtained at different locations and measurement times. In particular  

 objective S3, mainly targeted within WP2, is to provide reference quality measurement 
uncertainties that are traceable to recognized measurement standards, and 

 objective S4, mainly targeted within WP3, is to understand and quantify the metrology of a data 
comparison, including the additional uncertainties that arise from spatiotemporal mismatches 
between both observing systems.   

As such, these objectives target the uncertainty budget of a comparison between a satellite 

measurement and a sub-orbital reference measurement, which, in the ideal case of perfect co-

location, can be represented mathematically as: 

2

2

2

121 uukmm                                                              (1.1) 

where the left-hand side represents the observed difference between both measurements, k is a 
coverage factor, and u1 and u2 represent the measurement uncertainties (e.g. Immler et al., 2010).  
However, in case of spatiotemporal mismatch, i.e. non perfect co-location, an additional uncertainty 
term, σ2, must be included: 
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2

2

2

1

2

21 uukmm                                                           (1.2) 

The present document, Deliverable 3.4, represents key output from WP3, and targets mainly objective 
S4, i.e. σ2 in Eq. (1.2). In particular, it reports on several case studies, which cover temperature, 
humidity, ozone and aerosols. 

Figure 1.1 visualizes the relation between the current deliverable, the different tasks within WP3, and 
the other future deliverables.    

 

Figure 1.1:  Inter-linkages between D3.2 and other deliverables from WP3. Because WP2 also deals with some 
metrology aspects and provides the measurement uncertainties required for uncertainty budget closure aimed 
for in Task 3.2 and deliverable D3.4, it is included in this graph. 

Since the ultimate aim is to close the uncertainty budget of a comparison between satellite and sub-
orbital reference measurements (cfr. Eq. 1.2), the availability of reliable and traceable measurement 
uncertainties (S3, WP2) is essential to the work performed within WP3. Consequently, the present 
document will also briefly cover those metrology aspects that are primarily dealt with by WP2, in this 
way further clarifying which metrological aspects are (or should be) part of the reported measurement 
uncertainties, and  which are to be taken into account in addition to the measurement uncertainties 
when performing intercomparisons.   

Note that the current document deals with Level-2 data only, i.e. (retrieved) columns and profiles, as 
this is the focus of WP3 within GAIA-CLIM. For Level-1 radiance data, similar considerations may apply, 
but this is beyond the scope of the work planned here. Level-3 data, i.e. gridded averages of Level-2 
data, add another layer of metrological issues, in particular regarding representativeness of the 
averages due to the particular sampling patterns of the sounders and networks, but also this topic is 
largely beyond the scope of the current document. 
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1.2 Metrology of a data comparison and associated errors 
 

In most data comparison endeavors, such as ground-based validation exercises, a compromise must 
be made between on the one hand abundance of comparisons pairs, and on the other hand additional 
comparison errors, not related to the actual measurements uncertainties but due to non-perfect co-
location in space and time. This non-perfect co-location is a consequence of both a difference in 
spatio-temporal sampling, i.e. a satellite pixel centre never coincides exactly with the ground station 
location, and a difference in resolution, i.e. in the way each instrument has a smoothed perception of 
the inhomogeneous and variable atmosphere. This is visualized conceptually in Figure 1.2.   

 

Figure 1.2: Conceptual visualization of the metrology of a satellite-to-ground measurement comparison. Ideally, 
both measurements are point-like in space and time, and coincide perfectly. In practice, the sampling pattern of 
the satellite sounder and the fixed locations of the ground network induce sampling difference errors. 
Furthermore, differences in resolution, or, more broadly, in area of actual measurement sensitivity, induce 
additional smoothing difference errors. Figure reproduced from Verhoelst et al. (2015).  

A formal representation of the uncertainty budget of a comparison was already explored by Rodgers 
(1990, 2000) and by Rodgers and Connor (2003), and further elaborated by von Clarmann (2006). 
Lambert et al. (2012) includes the multi-dimensional perspective, dealing with horizontal smoothing 
errors and errors due to less than perfect co-incidence. While the above-mentioned papers deal with 
uncertainties in terms of covariance matrices, and thus assume the errors to have a Normal 
distribution, it is instructive to focus first on the decomposition of individual differences (i.e. per 
comparison pair) in terms of the different error sources, before deriving an uncertainty budget. A pair 
of co-located measurements, xSAT and xGND, can be related to each other as: 

totalGNDSAT xx   

and the error  

GNDSATtotal xx                                                                  (1.3) 

may be written as follows: 

DddxDSsysGNDsysSATrandGNDrandSATtotal 4/4,,,,   ,                     (1.4) 
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where 

 randSAT , and randGND, represent the random errors related to the measurement uncertainty 

of both sensors, 

 sysSAT , and sysGND, represent the systematic errors related to the measurement uncertainty 

of both sensors, 

 DS 4 represents the so-called smoothing difference error, which contains horizontal, vertical 

and temporal components, and 

 Dddx 4/ represents the so-called sampling difference error, which also contains horizontal, 

vertical and temporal components. 
 
The sampling difference error is the error that would occur even if the measurements were point-like, 
but not perfectly coinciding. Note that this is not the same as the sampling error resulting from an 
incomplete sampling of a signal (e.g. von Clarmann, 2006). The smoothing difference error is the error 
that would occur even if the measurements have coinciding nominal locations (e.g. station location 

and pixel centre coincide), but different resolutions. Notice that in Eq. (1.4), due to definition of total  

in Eq. (1.3) some errors have negative signs, of course in computing the total uncertainty these 
components do not cancel. For example in case of error uncorrelation the total uncertainty is given by 
the sum of all the uncertainties corresponding to the right hand side of Eq. (1.4). 
 
From the error budget described in Eq. (1.4), it is in principle possible to derive an uncertainty budget 
in terms of variances (column measurements) or covariance matrices (profile measurements), e.g. to 
calculate σ2 in Eq. (1.2), but that would implicitly assume a symmetric distribution of the errors, and 
the absence of correlations between the different terms. As shown in Verhoelst et al. (2015), these 
assumptions are not always valid, and it is therefore advisable to investigate errors, and their 
probability density functions (PDFs), instead of uncertainties, whenever possible.  

1.3 Definitions 
 

The nomenclature followed throughout this document is based as far as possible on the international 
conventions published by the Bureau International des Poids et Mesures (BIPM) in the form of two key 
documents: the Vocabulaire International de Métrologie (VIM), and the Guide to the expression of 
Uncertainty in a Measurement (GUM), see also Sect. 1.4. Further definitions were taken from a list of 
authoritative documents and compiled into a reference table in the framework of the CEOS WG on 
Calibration and Validation (WGCV) with support from the EC FP7 project QA4ECV (http://qa4ecv.eu). 
These conventions are applied strictly in the current document, and they are provided as Annex A for 
reference. Frequently used terms and specific concepts not defined in the QA4ECV table are listed 
below. Note that these are consistent with the summary on terminology compiled within GAIA-CLIM 
as the “Guide to Uncertainty in Measurement and its Nomenclature”. 
  

 Metrology: Definition 2.2 in the VIM: “science of measurement and its application (NOTE: 
Metrology includes all theoretical and practical aspects of measurement, whatever the 
measurement uncertainty and field of application).” 

 Measurement error: Definition 2.16 in the VIM: “Measured quantity value minus a reference 
quantity value”.   

http://qa4ecv.eu/
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 Systematic measurement error: Definition 2.17 in the VIM: “component of measurement 
error that in replicate measurements remains constant or varies in a predictable manner” 

 Random measurement error: Definition 2.19: “component of measurement error that in 
replicate measurements varies in an unpredictable manner” 

 Measurement uncertainty: Definition 2.26 in the VIM: “non-negative parameter 
characterizing the dispersion of the quantity values being attributed to a measurand, based 
on the information used” 

 Measurement bias: Definition 2.18 in the VIM: “estimate of a systematic measurement error” 

 Uncertainty budget: Definition 2.33 in the VIM: “statement of a measurement uncertainty, of 
the components of that measurement uncertainty, and of their calculation and combination” 

 Error budget: Undefined in the VIM, but easily derived from the definition of the uncertainty 
budget: “statement of a measurement error, of the components of that measurement error, 
and of their calculation and combination” 

 Smoothing error: the difference between the measurement and the truth at the nominal 
measurement location due to the smoothing properties of the instrument 

 Smoothing difference error: Not to be confused with the smoothing error, the smoothing 
difference error represents the difference between two measurements, due to the 
differences in smoothing of the truth. E.g. for measurements with very similar smoothing 
properties, the smoothing difference error may be much smaller than the individual 
smoothing errors. See also Section 1.2.  

 Sampling error: the difference between the measurement and the truth due to an incomplete 
sampling of the signal 

 Sampling difference error: Not to be confused with the sampling error, the sampling 
difference error represents the difference between two measurements due to differences in 
sampling of the truth.  See also Section 1.2. 

 Co-location mismatch: Generic term implying the mismatch between two co-located 
measurements in spatiotemporal smoothing and sampling. It causes smoothing and sampling 
difference errors in the horizontal, vertical and temporal domains.   

1.4 Related documents and projects 

Within GAIA-CLIM 

 The Gap Assessment and Impacts Document (GAID), in particular the gaps identified by WP2 
and WP3, identified as G2.xx and G3.xx  

 Deliverable D3.1, the initial input from WP3 to the GAID, which includes a literature review 

 The GAIA-CLIM Guidance Note Guide to Uncertainty in Measurement & its Nomenclature 

 Deliverable D3.2: Generic metrology aspects of an atmospheric composition measurement 
and of data comparisons 

 Deliverable D3.6 (upcoming): Library of smoothing/sampling error estimates for key 
atmospheric composition measurement systems, and smoothing/sampling error estimates 
for key data comparisons  
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Nomenclature and metrology principles 

 VIM, 3rd edition: International Vocabulary of Metrology – Basic and General Concepts and 
Associated Terms (VIM 3rd edition) JCGM 200:2012 

 GUM: Evaluation of measurement data – Guide to the expression of  
uncertainty in measurement , JCGM, JCGM 100:2008,  2008, 
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf 

 Data Modeling for Metrology and Testing in Measurement Science, Pavese, F. & Forbes, A. 
B. (Eds.), Springer Science + Business Media, 2009 

 Measurement Uncertainty Analysis Principles and Methods, NASA Measurement Quality 
Assurance Handbook – ANNEX 3, 2010 

 Annex A of the current document: the QA4ECV terms and definitions 
 

Related projects 

 QA4ECV (www.qa4ecv.eu): Quality Assurance for Essential Climate Variables, aims at 
“developing an internationally acceptable Quality Assurance (QA) framework that provides 
understandable and traceable quality information for satellite data used in currently evolving 
climate and air quality services.” It serves in particular as preparation for the Copernicus 
Climate Change Service. 

  FIDUCEO (www.fiduceo.eu): Fidelity and uncertainty in climate data records from Earth 
Observations aims at building “nine new climate datasets from Earth Observation using a 
rigorous treatment of uncertainty, informed from the discipline of metrology.”  

 MetEOC/MetEOC-2 (http://www.emceoc.org) aims at improving the metrology in Earth 
Observation (EO), and includes WPs on satellite calibration test sites, climate indicators, SI 
traceability of biophysical parameters, solar irradiance, and ECV measurements. 

 GeoMON (website no longer active), was an EC FP6 project focusing on atmospheric 
composition and with multiple aims, ranging from better data production to validation and 
integration in models. It dealt extensively with the characterization of the  horizontal 
smoothing properties of key atmospheric composition measuring instruments. 

 NORS (nors.aeronomie.be), the “demonstration Network Of ground-based Remote Sensing 
observations in support of the Copernicus Atmospheric Service” was an EU FP7 project aimed 
at demonstrating the value of ground – based remote sensing data from the Network for the 
Detection of Atmospheric Composition Change (NDACC) for quality assessment and 
improvement of the Copernicus Atmospheric Service products.   

http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.qa4ecv.eu/
http://www.qa4ecv.eu/lexicon/2#QA
http://www.fiduceo.eu/
http://www.emceoc.org/
http://nors.aeronomie.be/
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2 Overview of approaches to quantify co-location 
mismatch 
 

In Section 3, temperature and humidity profiles are considered. In particular an empirical approach is 

used to understand both the vertical smoothing and the spatio-temporal mismatch of IASI in the 

comparison with RAOB radiosonde profiles. Vertical smoothing is assessed by a data harmonization 

approach. In particular, RAOB profiles are vertically smoothed to match satellite data, using a flexible 

weighting function based on the Generalized Extreme Value pdf (GEV, Kotz and Nadarjah, 2000), which 

is independent of the averaging kernel and is fitted optimizing the distance w.r.t. IASI. To do this RAOB 

data have been interpolated using Hermite cubic splines and the quality of this interpolation has been 

assessed using reference GRUAN data. The spatio-temporal mismatch assessment is based on the 

harmonized RAOB and is based on an isotonic regression approach which gives the uncertainty for 

each combination of air distance, time delay and altitude. 

In Section 4, temperature and humidity profiles are considered. In particular, the work on temporal 

mismatch uncertainties in radiosonde profiles aims to provide a direct means of estimating the 

temporal mismatch uncertainty in both temperature and humidity as a function of altitude, season 

and time of day, for selected sites using ERA Interim model data. The approach is validated by 

comparing the ERA Interim results with GRUAN-processed radiosonde data from those sites where 

long-term high frequency data is available. The method provides an estimate of mismatch uncertainty 

for any given site using global reanalysis data, and would enable an appropriate sampling strategy to 

be put in place for an intercomparison measurement application in order to meet a defined 

comparison uncertainty requirement. 

In Section 5, ozone profiles are considered. The OSSSMOSE system (see Verhoelst et al., 2015, for a 

more in-depth description) is used to estimate the errors and uncertainties related with the particular 

sampling and smoothing properties of several ozone profiling instruments and their intercomparison. 

OSSSMOSE (Observing System of Systems Simulator for Multi-missiOn Synergies Exploration) uses (1) 

the metadata of actual measurement data sets, (2) parametrizations of the spatio-temporal sampling 

and smoothing properties of the measurement systems, and (3) high-resolution gridded 

representations of the atmosphere (such as reanalyses) to simulate measurements and their 

intercomparisons. As such, the system allows an estimate of co-location mismatch errors, which is 

based on a realistic representation of the real atmosphere and its variability. This method is 

independent from the measured data (e.g. those that are being validated) as only the metadata are 

used. The main advantages of this approach are (1) the possibility to estimate both smoothing and 

sampling (difference) uncertainties, (2) access to both random and systematic errors, and (3) the 

independence from actual measured values in the products to be validated, allowing a full consistency 

test on both the data and their reported uncertainties. The challenging part is the need for a reliable 

gridded representation of the atmosphere, at sufficient spatio-temporal resolution to resolve the 

smoothing and sampling mismatch.  

In Section 6, columnar aerosol is considered. In particular, the total atmospheric column aerosol 

optical depth (AOD) from satellite (AATSR) and AERONET is compared. To do this, the spatial standard 

deviation of satellite AOD around the AERONET site is used to understand if the co-location mismatch 
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is dominated by the spatial effects. The increase of Person’s correlation coefficient among the ground 

and satellite AOD applying different threshold to spatial variability, permits interpretation of the 

spatial standard deviation of satellite AOD as a measure of co-location mismatch. However, this is not 

a direct measure of the co-location mismatch uncertainty because the variation of the AATSR AOD 

values around a site is very likely dominated by ADV/ASV retrieval errors. 

In Section 7, aerosol profiles are considered. In particular, the comparison is related to 

CALIOP/CALIPSO and EARLINET aerosol backscatter profiles. In order to understand the co-location 

mismatch uncertainties, the co-location mismatch has been investigated as a function of the 

observational site, the CALIOP horizontal smoothing and altitude. To do this the horizontal smoothing 

level has been changed from 5 to 205 km along the satellite trajectory and the optimal horizontal 

smoothing has been computed for each site and atmospheric region. Optimal smoothing here, means 

the horizontal smoothing that minimizes co-location uncertainty. Differences among the various 

smoothing levels obtained permit interpretation of the co-location uncertainty in terms of local factors 

3 Temperature and humidity profiles: comparison of 
IASI and RAOB  
 

In this chapter, considering temperature and humidity in a region of continental Europe, the 

comparison of satellite and radiosonde data is organized as follows: in Section 3.4, IASI vertical 

smoothing is assessed by an independent method, this step allows harmonisation of RAOB 

measurements approximately to the same vertical smoothing as IASI products for further 

comparisons. In this first step, since RAOB products have a limited vertical resolution their information 

content is assessed by comparing RAOB and GRUAN products where available. As a result of this 

assessment, two additional uncertainties are defined: a sparseness uncertainty and a processing 

uncertainty. 

In Section 3.5, using the harmonized data, the joint impact on co-location uncertainty profile of air 

distance and delay between the two products is considered and nighttime vs daytime results are 

compared. 

The datasets considered here are provided by NOAA through the NPROVS system, discussed in some 

details in Section 3.3. In fact, NPROVS routinely (daily) compiles datasets of collocated radiosonde 

(and other products) collocated with satellites and sounding product suites. Hence, using this source 

of data makes the Virtual Observatory potentially permanently operative, see Section 3.6. 

3.1 IASI description 
 

The infrared atmospheric sounding interferometer (IASI) is a Fourier transform spectrometer based 

on the Michelson interferometer, associated with an integrated imaging system (Blumstein et al., 

2004). As part of the payload of the MetOp series of polar-orbiting meteorological satellites, there are 



 
   

 
GAIA-CLIM technical report 
D3.4 – Measurement mismatch studies and their impact on data comparisons 
 

 

15 

 

currently two IASI instruments in operation: on MetOp-A (launched 19 October 2006) and on Met-Op 

B (launched 17 September 2012) with the third due for launch in 2017. 

IASI is a nadir-viewing instrument recording infrared emission spectra from 645 to 2760 cm−1. It has 

8461 spectral samples that are aligned in 3 bands within the spectral range. Correspondingly, the 

spectral resolution at which the measurements are made is 0.5 cm−1 after apodisation. Although 

primarily intended to provide information in near real-time on atmospheric temperature and water 

vapour to support weather forecasting, the concentrations of various trace gases can also be retrieved 

from the spectra.  

IASI belongs to the thermal infrared (TIR) class of spaceborne instruments, which are devoted to 

tropospheric remote sensing. On the operational side, it is intended as a replacement for the HIRS 

instruments, whereas on the scientific side, it continues the mission of instruments dedicated to 

atmospheric composition, which are also nadir viewing, Fourier Transform instruments (e.g. 

Atmospheric Chemistry Experiment). 

The IASI spectral range has been chosen such that the instrument can record data from the following 

ranges: 

 carbon dioxide strong absorption around 15 μm, 

 ozone absorption around 9.6 μm, 

 water vapour strong absorption between 6.1 and 8.2 μm, 

 methane absorption up to the edge of TIR. 

Horizontal sampling 

IASI is an across-track scanning system with scan range of ±48° 20´, symmetrically with respect to the 
nadir direction. A nominal scan line covers 30 scan positions towards the Earth and two calibration 
views. One calibration view is into deep space, the other observes the internal black body. The scan 
starts on the left side with respect to the flight direction of the spacecraft. The elementary (or 
effective) field of view (EFOV) is the useful field of view at each scan position. Each EFOV consists of a 
2 x 2 matrix of so-called instantaneous fields of view (IFOV). Each IFOV has a diameter of 14.65 millirad 
(mrad), which corresponds to a ground resolution of 12 km at nadir and a satellite altitude of 819 km. 
The 2 x 2 matrix is centered on the viewing direction. The instrument points spread function (PSF) is 
defined as the horizontal sensitivity within an IFOV. The IFOV diameter (D = 14.65 mrad) is defined so 
that the integral of the PSF over this circular area is larger than 95 %. The non-uniformity within the 
inner 80% of the IFOV (D=11.72 mrad) is not larger than ± 5 %. Table 3.1 below summarises the 
requirements for the IASI Level 2 products with respect to product accuracy, sampling and timeliness 
(EUMETSAT,  2014). 
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Table 3.1. Requirements for IASI level 3 products. 

Temporal sampling 

The IASI instrument produces around 1,300,000 spectra every day. It takes around 8 seconds for IASI 

to acquire data from one complete across track scan and the onboard calibration. The former consists 

of 120 interferograms, each one corresponding to one pixel. At nadir, the instrument samples data at 

intervals of 25 km along and across track.  

Vertical smoothing 

The IASI sounding products represent thermodynamic states of deep atmospheric layers at variable 
depths, due to the integrating nature of the radiation measurements at the top of the atmosphere. 
The maximum number of independent pieces of information determined in the temperature profile 
is 14, with a maximum of 10 pieces for the moisture profile—but these numbers vary with the 
atmospheric situation. In summary, the true vertical resolution of the retrieved profiles is lower than 
the vertical grid defined in the products. Profiles retrieved from such radiance measurements are 
smoothed versions, where the smoothing functions are given by the averaging kernels. 
 
An example of a set of averaging kernels for temperature and humidity is shown in Figure 3.1. Two 
things can be seen: the vertical extent over which a particular kernel averages, and the amplitude, 
which shows how sharply a kernel peaks at a particular height. Higher amplitudes indicate more 
information about the corresponding layer. For example, an amplitude of one would indicate perfect 
measurements at a distinct level; however, this is purely hypothetical and does not exist. 
Nevertheless, the retrieved profiles are represented on a fine vertical grid for the reason that the 
averaging kernels vary with atmospheric situation. 
 
Consequently, the vertical resolution and the central altitudes of the resolved layers vary also. The 
actual variation is not known a priori, so the retrieval is performed on a fixed, fine pressure grid and 
the smoothing is represented by the a posteriori error covariance matrix, which is part of the product 
and represented on the same pressure grid. The off-diagonal elements of the covariance matrix 
describe the inter-relationship between the state-vector elements and provide information about the 
actual vertical resolution. 
 
In particular, the IASI dataset used within GAIA-CLIM WP3, is provided by NOAA/NESDIS. The 
atmospheric profiles produced by NOAA/NESDIS (Reale et al., 2010) are provided at 100 pressure 
levels from 1100 to 0.0161 hPa. A statistical method—PWLR (Piece-Wise Linear Regression) is applied 
using the input measurements available: IASI and AMSU/MHS, or IASI only. It provides estimates of 
the temperature, water-vapour and ozone profiles as well as surface skin temperature in all-sky 
conditions—clear and cloudy scenes. The PWLR retrievals serve as “first guess” to the optimal 
estimation method. The latter essentially involves comparing the measured spectra with an a priori 
spectrum. Subsequently, the a priori spectrum is perturbed as many times as needed to adjust the 
simulated spectrum such that it resembles the measured one as closely as possible (e.g. the amount 
of the measured species allowing the retrieval is perturbed, for example the amount of CO2 is variated 
to allow the retrieval of temperature profiles). It must be noted that a variety of errors must be taken 
into consideration while perturbing the a priori, such as the error on the a priori, the instrumental 
error and the expected error. 

3.2 RAOB description 
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A radiosonde is a battery-powered telemetry instrument package carried into the atmosphere usually 

by a weather balloon that measures various atmospheric parameters and transmits them by radio to 

a ground receiver. The radiosonde contains instruments capable of making direct in-situ 

measurements of air temperature, humidity and pressure with height, typically to altitudes of 

approximately 30-35 km, depending on several factors (including location and season).  

Conventional radiosonde observations (RAOBs) have been used historically as a commonly de facto 

accepted reference dataset in satellite measurement and derived product validation. The upper-air 

data that are collected and transmitted during the flight of a radiosonde include the air pressure, air 

temperature and humidity measured continuously by the instruments aboard the radiosonde 

package.  

Worldwide there are more than 800 radiosonde launch sites. Most countries share data with the rest 

of the world through international agreements. Nearly all routine radiosonde launches occur 45 

minutes before the official observation time of 0000 UTC and 1200 UTC, more rarely at 6 or 18 UTC. 

The radiosonde transmits temperature and relative humidity data at each pressure level. The altitudes 

of these levels are calculated using GPS. In older models, this is done using the hypsometric equation 

that relates the vertical height of a layer from the mean layer temperature, the humidity of the layer 

and the air pressure at top and bottom of the layer. Significant levels where the vertical profiles of the 

temperature or the dewpoint undergo a change are determined from the sounding. The height of the 

troposphere and stability indices are calculated. 

http://www.meteor.wisc.edu/~hopkins/aos100/wxi-raob.htm
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Figure 3.1. Averaging kernels for temperature (left) and water-vapour (right) profiles for a mid-latitude ocean 
sample taken on 12/09/2014. Sampling  

RAOB observations are processed, tabulated and encoded for transmission over communication 

networks. While the radiosonde transmits an essentially continuous stream of temperature and 

humidity information back to the station (each 5-10 m of altitude, measured each 1-2 s). The RAOB 

data include temperature, humidity, and wind profiles at 22 mandatory levels (including surface) and 

various significant levels: 

• MANDATORY LEVELS: By international convention, the following 22 specific pressure levels 

must be reported in the RAOB message: the surface, 1000, 925, 850, 700, 500, 400, 300, 250, 

200, 150, 100, 70, 50, 30, 20, 10, 7, 5, 3, 2, 1 hPa. The information for some of these levels is 

plotted routinely on constant pressure charts to show the spatial variability of these levels 

and it is used as input in the numerical weather prediction models. Note that many sonde 

sites do not routinely measure to the highest levels owing to balloon burst. 

• SIGNIFICANT LEVELS: In addition to the mandatory levels, as part of the RAOB message are 

included pressure levels at significant or abrupt changes and extrema in the vertical 

temperature and/or dewpoint temperature profiles. In a radiosonde observation, a significant 

level is a level other than a mandatory level, for which values of pressure, temperature, and 

http://www.meteor.wisc.edu/~hopkins/aos100/upairmap.htm
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humidity are reported either because they are sufficiently important or unusual to warrant 

the attention of the forecaster, or these values are required for the reasonably accurate 

reproduction of the radiosonde observation. There are definite rules governing the selection 

of significant levels, set forth in the Manual of Radiosonde Observations, WBAN Circular P, 7th 

ed. rev., 1957. As a result, significant levels change among different profiles and, on average, 

we have 28 significant levels per profile in the dataset considered. By assuming that the 

temperature and dewpoint profiles change linearly with height between significant levels (i.e., 

constant environmental lapse rate), a reasonably accurate reproduction of the RAOB sounding 

can be made from the sequence of RAOB message information at significant levels and 

supplemented by the mandatory levels. 

3.3 Datasets 
 

The analysis of RAOB-IASI co-locations is based on the dataset provided by NOAA through the co-

location software known as NPROVS system (http://www.star.nesdis.noaa.gov/smcd/opdb/nprovs/) 

and two auxiliary datasets, namely ECMWF and GRUAN. The NPROVS dataset includes K=3900 co-

locations, from unbalanced design over 21 RAOB stations across the central European area (C-EU) in 

Figure 3.2 over the period January 2015 – February 2016. The three continental GRUAN stations at Cabauw, 

Lindenberg and Payerne are included (Section 3.3.2). 

Each co-location record includes RAOB and IASI measures for temperature and water vapor mixing 

ratio (WVMR). Considering IASI data, NPROVS dataset provided also IASI retrieval uncertainties, but 

individual averaging kernels discussed above were not available in this dataset. 

 

Figure 3.2. Central European RAOB network (C-EU) including three continental GRUAN stations at Cabauw, 
Lindenberg and Payerne. 

3.3.1 ECMWF 
 

ERA-Interim is a global atmospheric reanalysis from 1979, continuously updated in real time. The data 
assimilation system used to produce ERA-Interim is based on a 2006 release of the Integrated Forecast 

http://www.star.nesdis.noaa.gov/smcd/opdb/nprovs/
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System (IFS - Cy31r2). The system includes a 4-dimensional variational analysis (4D-Var) with a 12-
hour analysis window (Dee et al., 2011). 
 
Each single analysed observation is described as instantaneous, though it represents an average over 
the model time step (30 minutes for ERA-Interim). Depending on the parameter, forecast data in ERA-
Interim is either instantaneous or accumulated from the beginning of the forecast (twice daily 
forecasts starting at 00 and 12 UTC). Parameters such as precipitation and radiation are accumulated. 
The accumulated parameters in ERA-Interim are listed in Tables 9, 13-15 of the ERA-Interim archive 
document (http://www.ecmwf.int /en/elibrary/ 8174-era-interim-archive-version-20). 
 
Analyses are available every 6 hours (0, 6, 12, 18 UTC) and the twice daily forecasts (from 00 and 12 
UTC) provide output for surface and pressure level parameters, at forecast steps every 3 hours to 24 
hours, then with decreasing frequency to 10 days. 

Product description 

The ERA-Interim dataset contains atmospheric and surface parameters: 6-hourly atmospheric fields 
on model levels, pressure levels, potential temperature and potential vorticity; 3-hourly surface fields 
and daily vertical integrals; monthly averages of daily means and Synoptic monthly averages at 0 UTC, 
6 UTC, 12 UTC, 18 UTC. 
 
The temporal coverage is from 1 January 1979 to present and spatial coverage is global. 
The spectral resolution is T255 (T255 spherical-harmonic representation of the basic dynamic fields), 
while tentative horizontal resolution is ~80 km (reduced Gaussian grid N128); ~83km/0.75 deg when 
interpolated to a regular lat/long grid. 
 
There are 60 vertical levels from the surface up to 0.1 hPa. The list of ERA-Interim fields (parameters) 
available for downloading can be accessed in the ECMWF dataserver. Note that while ERA-Interim 
"runs" in near real time, data is published with a few months delay. Note also that several quality 
issues are known with ERA-Interim data and ERA-Interim daily retrieval efficiency documentation gives 
indications for best practices in retrieving ERA-Interim data. 
 
For the GAIA-CLIM WP3 objectives, ERA-INTERIM forecast daily data have been co-located with all the 
RAOB stations in a box of latitude (35°, 70°) and longitude (-10°, 35°) . The investigated dataset covers 
the period 01-Jan-2015 – 29-Feb-2016. For a detailed documentation of the ERA-Interim Archive see 
Berrisford et al. (2011) .  

3.3.2 GRUAN 
 

RAOB represents the comprehensive contribution of the radiosounding measurement to the global 

observing system. However, RAOB data cannot provide any reference-quality (Immler et al. 2010, 

hereafter I2010) in situ and ground-based remote sensing observations of upper-air essential climate 

variables (ECVs; Seidel et al. 2009; Bojinski et al. 2014).  

For this reason, the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) 

data processing for the Vaisala RS92 radiosonde was developed to meet the criteria for reference 

measurements (Dirksen et al., 2014). These criteria stipulate the collection of metadata, the use of 

well-documented correction algorithms, and the estimation of the measurement uncertainty. GRUAN 

radiosounding profiles are provided at high vertical/temporal resolution (1-2 s equivalent to 5-10 m 

http://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20
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in altitude). An important and novel aspect of the GRUAN processing is that the uncertainty estimates 

are vertically resolved.  

An additional GRUAN requirement for performing reference measurements with the RS92 is that the 

manufacturer-prescribed procedure for the radiosonde's preparation, i.e. heated reconditioning of 

the sensors and recalibration during ground check, is followed. In the GRUAN processing however, the 

recalibration of the humidity sensors that is applied during ground check is removed. For the dominant 

error source, solar radiation, laboratory experiments were performed to investigate and model its 

effect on the RS92's temperature and humidity measurements. GRUAN uncertainty estimates are 0.15 

K for night-time temperature measurements and approximately 0.6 K at 25 km during daytime but 

vary vertically and on a per ascent basis. The other uncertainty estimates are up to 6% relative 

humidity for humidity, 10–50 m for geopotential height, 0.6 hPa for pressure, 0.4–1 m s−1 for wind 

speed, and 1° for wind direction. Daytime temperature profiles for GRUAN and Vaisala processing are 

comparable and consistent within the estimated uncertainty. GRUAN daytime humidity profiles are 

up to 15% moister than Vaisala processed profiles, of which two-thirds is due to the radiation dry bias 

correction and one-third is due to an additional calibration correction. Redundant measurements with 

frost point hygrometers (CFH and NOAA FPH) show that GRUAN-processed RS92 humidity profiles and 

frost point data agree within 15% in the troposphere. No systematic biases occur, apart from a 5% dry 

bias for GRUAN data around −40 °C at night. GRUAN radiosonde daytime dry biases with respect to 

LBLRTM and IASI have been of the order of 2.5 % in the upper troposphere, though based on a 

relatively small sample size of comparisons (Calbet et al., 2016).  

GRUAN data processing is applied currently on the RS92 radiosondes. In the future also measurements 

by other radiosonde types will be used to apply GRUAN processing. An example of CFH/RS92/RS41 

comparisons is shown in Figure 3.3. 
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Figure 3.3. Right panel: relative humidity measurements by three different sensors in the same payload: CFH 

(red), RS41 (black) and RS92 (blue). The comparison flight took place at the GRUAN station Sodankylä on 

November 23, 2015. Left panel: corresponding temperature profile measured by RS41 radiosonde. 

For the purposes of GAIA-CLIM WP3, GRUAN reference measurements will be used to quantify the co-

location error with a high vertical resolution and to support the co-location error quantification for 

the comprehensive measurements provided by RAOB. To do this, the data of the continental GRUAN 

stations at Cabauw, Lindenberg and Payerne will be used. 

3.4 Vertical smoothing  
 

RAOB and IASI profiles are not immediately comparable because they are not available at the same 

pressure levels and have different vertical smoothing. In particular, IASI observations come at fixed 

pressure level grid, while RAOB pressure level grid changes across launches. Moreover, IASI 

observations, due to kernel averaging, have an important vertical smoothing, which is essentially 

absent in radiosonde. In fact, the IASI profiles are available at fixed pressure levels, but their effective 

vertical resolution is much coarser because of smoothing resulting from the use of averaging kernels. 

RAOB radiosounding profiles are reported at 22 mandatory plus approximately 28 significant pressure 

levels which differ among different profiles. Although there is no smoothing effect, the reporting at 

only these few atmospheric vertical levels does not allow to catch all the gradients of the temperature 

and water vapor field.  

For these reasons, the approach reported below has the aim to reconcile the difference between the 

two measurement techniques and, then, to assess the co-location uncertainty after considering 

sparseness and vertical smoothing uncertainties. 

3.4.1 Vertical harmonization 
 

For a given co-location 𝑘, let 𝒙𝐺 be the RAOB measure vector related to the pressure levels 𝒑𝐺 =

(𝑝𝐺,1, … , 𝑝𝐺,𝑁𝑘
), while let 𝒙𝑆 be the IASI measure vector related to the pressure levels 𝒑𝑆 =

(𝑝𝑆,1, … , 𝑝𝑆,𝑀). Note that the number of pressure levels for RAOB depends on co-location 𝑘 while 𝑀 

is fixed. Moreover, in general RAOB and IASI measurements are never available at the same pressure 

level, that is 𝑝𝐺,𝑙 ≠ 𝑝𝑆,ℎ , 𝑙 = 1, … , 𝑁𝑘 , ℎ = 1, … , 𝑀. The solution we adopt is to transform discrete 

RAOB into continuous profiles in order to calculate the differences at the fixed IASI levels 𝒑𝑆. 

Therefore, the choice of the profile to be transformed into a continuous profile is crucial, as 

implications are different. In our case, the choice is driven by the smoothing properties of RAOB and 

IASI measurements. As discussed in Section 3.1, RAOB measurements have practically no vertical 

smoothing while IASI measurements have a relevant vertical. In order to understand the effect of the 

IASI vertical smoothing on the difference between RAOB and IASI, the vertical smoothing must be 

allowed to vary. A natural solution is to vary the smoothness of RAOB as the original measures are not 
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smoothed. This requires to compute integrals of a continuous profile and for this reason only RAOB 

profiles are transformed into continuous profiles. 

3.4.2 Sparseness and processing uncertainty 
 

In this Section the properties of RAOB interpolation are discussed. In fact, the limited number of 

mandatory and significant levels entails a loss of information w.r.t. to high resolution vertical profiles 

such as GRUAN profiles. Moreover, comparing reference measures with RAOB at observation levels 

allows to assess Vaisala processing uncertainty. 

To see this, RAOB profiles 𝒙𝐺  observed at discrete levels are transformed into continuous profiles 

𝒙𝐺
𝑆  using spline interpolation. Within the spline family, we adopt interpolating cubic Hermite splines 

since they avoid unnatural oscillations of the profile and ensure that the profile 𝒙𝐺
𝑆  satisfies the 

following property (Catmull and Rom, 1974). 

Internality Property.     Consider RAOB profile 𝒙𝐺  observed at pressure levels 𝑝𝐺,𝑙 , 𝑙 = 1, … , 𝑁𝑘  as 

defined in Section 3.4.1 and its cubic Hermite spline denoted by 𝒙𝐺
𝑆 . For pressure level 𝑝 such that  

𝑝𝐺,𝑙 ≤ 𝑝 ≤ 𝑝𝐺,𝑙+1, we have that  

𝑥𝑚𝑖𝑛(𝑝) ≤ 𝒙𝐺
𝑆 (𝑝) ≤ 𝑥𝑚𝑎𝑥(𝑝) 

where 𝑥𝑚𝑖𝑛(𝑝) = 𝑚𝑖𝑛(𝑥𝐺(𝑝𝑙), 𝑥𝐺(𝑝𝑙+1)) and 𝑥𝑚𝑎𝑥(𝑝) = 𝑚𝑎𝑥 (𝑥𝐺(𝑝𝑙), 𝑥𝐺(𝑝𝑙+1)) for 𝑙 = 1, … , 𝑁𝑘. 

RAOB vertical profiles are first interpolated using Hermite splines. In order to assess the accuracy of 

this approach, the interpolated RAOB are validated using the GRUAN dataset of Section 3.3.2, which 

covers the same period and a subset of RAOB stations, namely Cabauw, Lindenberg and Payerne. For 

this reason, validation is based only on 306 launches for temperature and 439 launches for WVMR. 

The spline uncertainty is assessed by considering the difference between GRUAN measures and RAOB 

splines. Figures 3.4 and 3.5 show the uncertainty with respect to pressure. Minima of the graph are 

the mandatory pressure levels, where there is always a RAOB measure. Note that these minima are 

not zero as GRUAN retrievals are obtained using GRUAN processing discussed in Section 3.3.2, which 

is different from Vaisala processing, used in the RAOB dataset. Hence these minima may be used as 

an estimate of Vaisala-GRUAN processing uncertainty. In particular for temperature, this uncertainty 

is nearly constant, about 0.12 K up to 300 hPa, and increases up to 0.39 K above. For humidity, the 

Vaisala-GRUAN processing uncertainty has an approximately linear decrease from 0.1 g/kg at 925 hPa 

to about 0.01 g/kg at 300 hPa. 

Once this Vaisala processing uncertainty is eliminated the remaining part is related to lack of 

information of RAOB products related to vertical sparseness. For temperature, in the range 1000-300 

hPa this is smaller than 0.48 K but increases to about 1 K in upper reaches of the measured profile.  

For humidity this is smaller than 0.22 g/kg up to 500 hPa and smaller than 0.05 g/kg above. 
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Figure 3.4.  Temperature: Spline interpolation uncertainty assessed through GRUAN-RAOB comparison. Local 
minima of interpolation uncertainty occur at mandatory levels: 925, 850, 700, 500, 400, 300, 250, 200, 150, 
100, 70, 50, 30, 20 hPa. 

 

Figure 3.5.  WVMR: Spline interpolation uncertainty assessed through GRUAN-RAOB comparison. Local minima 
of interpolation uncertainty occur at mandatory levels: 925, 850, 700, 500, 400 hPa. 

3.4.3 Vertical smoothing uncertainty 
 

In the comparison of co-located RAOB-IASI profiles, we consider that the different vertical smoothness 

of the two data products contributes to the total co-location uncertainty. In order to assess the vertical 

smoothing uncertainty, we first set up an optimization problem which aims at deriving the IASI vertical 

smoothness at each pressure level 𝑝𝑆,ℎ. 

To do this, we introduce the smoothed RAOB measure at pressure level 𝑝𝑆,ℎ, which is given by 
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𝑥̃𝐺,ℎ
𝑆 (𝜽) =

∫ 𝒙𝐺
𝑆 (𝑝)𝑤(𝑝; 𝜽)𝑑𝑝

∫ 𝑤(𝑝; 𝜽)𝑑𝑝
 

where 𝑤(𝑝; 𝜽) is a weight function with parameter vector 𝜽. The formula above is adjusted to avoid 

biases at the borders of the vertical domain. 

We tested weight functions with different shapes and, in particular, the flat (rectangluar) function, the 

cosine function, the Gaussian function and the generalized extreme value (GEV) density function. The 

first three functions are symmetric and centered at the nominal pressure level 𝑝𝑆,ℎ. On the other hand, 

the GEV function is characterized by three parameters, so that 𝜽 = (𝑠ℎ𝑎𝑝𝑒, 𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛). Notice 

that GEV may show both left and right skewness and its peak may have an offset from the nominal 

pressure level.  

For each weight function and each pressure level 𝑝𝑆,ℎ, the parameter vector 𝜽 is obtained by 

minimizing the distance between IASI 𝑥𝑆,ℎ and smoothed RAOB 𝑥̃𝐺,ℎ
𝑆 . To do this, consider 𝐾 different 

RAOB-IASI co-location profiles observed across space and time and let E() be the average operator 

over these K co-locations. Hence the optimal smoothing is given by the following minimum co-location 

mean square error problem: 

𝜽ℎ = argmin
𝜽

𝐸 [(𝑥𝑆,ℎ − 𝑥̃𝐺,ℎ
𝑆 (𝜽))

2
] 

and the quantity  

 𝑥̃𝐺,ℎ
𝑆 = 𝑥̃𝐺,ℎ

𝑆 (𝜽ℎ) 

is the optimally smoothed RAOB. Additionally, the vertical smoothing uncertainty at pressure level 

𝑝𝑆,ℎ is given by 

𝑢𝑣,ℎ
2 = 𝐸 [( 𝑥̃𝐺,ℎ

𝑆 − 𝑥𝐺,ℎ
𝑆 )

2
] 

and, in practice, can be computed by 

𝑢𝑣,ℎ
2 = 𝑢ℎ

2 − 𝑢𝑐,ℎ
2  

where  𝑢ℎ
2  is the total co-location uncertainty at altitude ℎ, which includes differences in horizontal 

and temporal co-location, as well as differences in vertical smoothing, that is: 

 𝑢ℎ
2 = 𝐸 [(𝑥𝑆,ℎ − 𝑥𝐺,ℎ

𝑆 )
2

] . 

Moreover, 𝑢𝑐,ℎ
2  is the adjusted co-location uncertainty, corrected for differences in vertical 

smoothing, that is:  

𝑢𝑐,ℎ
2 = 𝐸 [(𝑥𝑆,ℎ − 𝑥̃𝐺,ℎ

𝑆 )
2

]. 

3.4.4 Analysis and results 
 

The original NPROVS dataset is first filtered in order to have RAOB profiles that cover the vertical range 

[958.6-10.0] hPa, for temperature, and the vertical range [958.6-300.0] hPa for WVMR. In order to 

give good spline interpolation, RAOB profiles are additionally selected to have at least 20 standard and 



 
   

 
GAIA-CLIM technical report 
D3.4 – Measurement mismatch studies and their impact on data comparisons 
 

 

26 

 

significant level measures for temperature and 14 for moisture. This filtering results in the availability 

of 1596 co-locations for temperature and 2648 co-locations for WVMR. 

Smoothing optimization 

RAOB and IASI vertical profiles are first interpolated using Hermite splines. Subsequently, the 

optimization procedure described above is implemented in order to estimate 𝜽ℎ at each IASI pressure 

level and for each weight function. Figures 3.6 and 3.7 depict the optimization results for temperature 

and WVMR, respectively. For both temperature and humidity, it can be seen that the GEV function 

attains the lowest uncertainty for most of the pressure levels. Therefore, all the subsequent analysis 

are based on the GEV function. Figures 3.8 and 3.9 show the shape of the GEV functions for each IASI 

pressure level while Figures 3.10 and 3.11 show the offset and the width of the GEV functions. In 

particular, the offset is the difference between the IASI nominal level and the location of the GEV 

function peak, while the width is given in terms of Full Width at Half Maximum (FWHM). 

It is important to note that the above results were obtained considering all the (filtered) co-locations, 

regardless of their date, location, spatial mismatch and temporal mismatch. This implies that the 

results hold for any past and future co-location observed in the Central European area (C-EU). If this 

result has the value of generality, it may be considered sub-optimal, in the sense that seasonal and 

daily variations of atmosphere are not considered. In fact, a dynamic procedure covering for daily 

atmospheric variations will be used for the Virtual Observatory which is discussed in Section 3.6. 

 

 

Figure 3.6. Uncertainty decomposition for temperature. The dark blue curve is the total co-location uncertainty 
𝑢ℎ while the red, yellow, purple and green curves are the adjusted co-location uncertainty 𝑢𝑐,ℎ for the flat, 

cosine, normal and GEV weight functions, respectively. The thick light blue curve is the vertical smoothing 
uncertainty 𝑢𝑣,ℎ based on the GEV function, which is the best weight function. 



 
   

 
GAIA-CLIM technical report 
D3.4 – Measurement mismatch studies and their impact on data comparisons 
 

 

27 

 

 

Figure 3.7. Uncertainty decomposition for WVMR. The dark blue curve is the total co-location uncertainty 𝑢ℎ 
while the red, yellow, purple and green curves are the adjusted co-location uncertainty 𝑢𝑐,ℎ for the flat, cosine, 

normal and GEV weight functions, respectively. The thick light blue curve is the vertical smoothing uncertainty 
𝑢𝑣,ℎ based on the GEV function, which is the best weight function. 

 

 

 

Figure 3.8.  GEV weight functions for temperature. 
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Figure 3.9.  GEV weight functions for WVMR. 

 

Figure 3.10.  GEV function offset and width for temperature. 
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Figure 3.11.  GEV function offset and width for WVMR. 

Vertical smoothing and co-location uncertainty 

The optimization results of the previous paragraph are used to evaluate both the vertical smoothing 

uncertainty 𝑢𝑣,ℎ
2  and the adjusted co-location uncertainty 𝑢𝑐,ℎ

2 . In fact, the latter is a byproduct of the 

optimization procedure since 𝑢𝑐,ℎ
2  describes the irreducible error, namely the error budget component 

that cannot be reduced by changing 𝜽. On the other hand, the vertical smoothing uncertainty is 

obtained by first evaluating the total uncertainty at each pressure level and by computing 𝑢𝑣,ℎ
2 = 𝑢ℎ

2 −

𝑢𝑐,ℎ
2 . This uncertainty decomposition is displayed in Figures 3.6 and 3.7 and is based on the GEV weight 

function. In particular, both total co-location uncertainty, 𝑢ℎ , and vertical smoothing uncertainty, 𝑢𝑣,ℎ , 

show the same periodic behavior with local minima at mandatory levels as in Figures 3.4 and 3.5, due 

to sparseness uncertainty discussed in Section 3.4.2. Interestingly, this effect is largely reduced in the 

co-location uncertainty 𝑢𝑐,ℎ . This is due to the fact that also the sparseness error is smoothed by our 

procedure. Note that for humidity, the sparseness effect is a smaller fraction of total co-location 

uncertainty due to the larger atmospheric variability of humidity, giving a smoother behavior of total 

co-location and vertical smoothing uncertainties. 

Considering temperature, we see that vertical smoothing uncertainty, in comparison to total and co-

location uncertainties is roughly constant, about 0.5 K, or slowly decreasing up to 300 hPa; above, it 

increases more than co-location uncertainty which is more stable. On the other side, considering 

humidity, total and vertical smoothing uncertainties have a maximum near 800 hPa and above they 

smoothly decrease. In particular, vertical smoothing uncertainty decreases to zero faster than the 

other two involved uncertainties. 

Note that the above results do not make use of IASI averaging kernels, which were not available in 

NPROVS as discussed in Section 3.3. Although, in principle, it may be interesting to compare the results 

obtained by our smoothing and the application of original IASI kernels to RAOB data, we consider 

valuable the introduction of a methodology, which is able to perform optimal vertical harmonization 

in absence of direct information on vertical smoothing of one of the two products being compared. 
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3.5 Spatio-temporal mismatch 
 

In this section, we consider the effect of horizontal and temporal mismatch to the co-location 

uncertainty of the previous section. In particular, the vertically harmonized data of the previous 

section are considered with a focus on the co-location mean square error  

𝑢𝑐,ℎ
2 = 𝐸 [(𝑥𝑆,ℎ − 𝑥̃𝐺,ℎ

𝑆 )
2

] 

where, as before, 𝑥𝑆,ℎ is IASI temperature or humidity and 𝑥̃𝐺,ℎ
𝑆  is the corresponding optimally 

smoothed RAOB measurement.  

Using the C-EU data of Section 3.3, the objective here is to understand the variation of the above co-

location uncertainty as a function of the horizontal distance between IASI and RAOB measurements 

at each IASI pressure level pS,h, that is 

𝑢𝑐,ℎ
2 = 𝜎2(𝜕𝑎, 𝜕𝑡) 

Similarly to Sofieva et al. (2008) 𝜕𝑎 = 𝑎𝑖𝑟. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the air mass distance, that is the distance 

between IASI and RAOB adjusted for advection due to wind. Namely 𝜕𝑎 = |𝜕𝑠 + 𝑤𝜕𝑡| where 𝜕s is the 

displacement vector among RAOB and IASI measurements at height ℎ, w is the wind vector and 𝜕t is 

the time delay between measurements. 

Since, from physical considerations, we may assume that 𝜎2(𝜕𝑎, 𝜕𝑡) is a nondecreasing function in 

each of its coordinates, we estimate 𝜎2 by fitting a bidimensional isotonic regression model to squared 

co-location errors 

𝜖2 = (𝑥𝑆,ℎ − 𝑥̃𝐺,ℎ
𝑆 )2. 

The bidimensional isotonic regression technique is a constrained least square method, which gives an 

estimate of 𝜎2 such that 𝐸(𝜎2 − 𝜖2)2 is a minimum, conditional on marginal monotonic constraints, 

that is 𝜎2(𝜕𝑎 + 𝑑, 𝜕𝑡) ≥ 𝜎2(𝜕𝑎, 𝜕𝑡) and 𝜎2(𝜕𝑎, 𝜕𝑡 + 𝑑) ≥ 𝜎2(𝜕𝑎, 𝜕𝑡) for any 𝑑 > 0. The 

optimization is carried out by the quadratic programming technique proposed by Meyer (2013). 

3.5.1 Analysis and results 
 

The isotonic model has been fitted separately to daytime and nighttime co-locations. Since 

atmosphere is more stable under nighttime conditions, we start with nighttime uncertainty. 

Nighttime temperature co-location uncertainty 

The temperature co-location uncertainty 𝜎(𝜕𝑎, 𝜕𝑡), or co-location root mean square error (RMSE), is 

reported in Figures 3.12-3.14 at three different pressure levels for nighttime data. These figures show 

the variation of co-location uncertainty in the air.distance×delay domain, respectively in the lower 

troposphere, upper troposphere and lower stratosphere. The vertical profile of uncertainty 𝜎 is 

reported in 3.15, which gives minimum, average and maximum uncertainty with respect to 

air.distance ×delay. As a result, overall in C-EU, co-location uncertainty is smaller than 1.5 K, except 

near ground level where it reaches 1.8 K. But large uncertainties (3.0-3.5K) are observed when both 
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air.distance and delay are large. For example, at 11 hPa, Figure 3.14, shows an increase up to 3.6 K at 

large distances. 

 

Figure 3.12. Temperature co-location uncertainty, estimated by isotonic regression, nighttime data, at 958.6 
hPa. 

 

Figure 3.13. Temperature co-location uncertainty, estimated by isotonic regression, nighttime data, at 555.2 
hPa. 
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Figure 3.14. Temperature co-location uncertainty, estimated by isotonic regression, nighttime data, at 11 hPa. 

 

Figure 3.15. Temperature. Minimum, average and maximum uncertainty in central European area. 

Nighttime humidity co-location uncertainty 

The co-location uncertainty of water vapor mixing ratio (WVMR), estimated using the isotonic 

regression, is reported in Figure 3.16-3.18 at three different pressure levels for nighttime data. These 

figures show the variation of co-location uncertainty in the air.distance×delay domain, from lower to 

upper troposphere. The vertical profile of uncertainty 𝜎 is reported in Figure 3.19, which gives 

minimum, average and maximum uncertainty with respect to air.distance ×delay. Overall, this shows 

that the co-location uncertainty can be considered small in C-EU at all pressure levels, say smaller than 

1 g/kg. But large uncertainties (1.5-3.0 g/kg)  are observed when both air.distance and delay are large, 

in particular around 550 and 720 hPa. 
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Figure 3.16. Humidity. Co-location uncertainty, estimated by isotonic regression, nighttime data at 958.6 hPa. 

 

Figure 3.17. Humidity. Co-location uncertainty, estimated by isotonic regression, nighttime data at 729.9 hPa. 
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Figure 3.18. Humidity. Co-location uncertainty, estimated by isotonic regression, nighttime data at 300 hPa. 

 

Figure 3.19. Humidity. Minimum, average and maximum uncertainty in central European area. 

 

Nighttime vs daytime uncertainty 

The isotonic regression approach has been applied successfully also to daytime data giving the 

estimated uncertainty surfaces at various pressure levels for temperature and humidity. We omit here 

the surfaces corresponding to nighttime analysis. Instead, in order to highlight principal similarities 

and differences, Figures 3.20-3.21 report the differences day-night of average uncertainty and the 

differences day-night of maximum uncertainty for temperature and WVMR, respectively, in the study 

area (C-EU). It is seen that average uncertainty is almost the same during day or night, while the 

difference between day and night maximum uncertainty, that is uncertainty at large spatio-temporal 

distance, reaches 3.5K and 1.2 g/kg for temperature and humidity respectively. In particular for 

temperature, the difference of maxima is always smaller than1.2 K in absolute value except between 

50 and 30 hPa. 
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Figure 3.20. Temperature day-night difference. Blue solid line: difference between C-EU averages. Red dashed 
line: difference between C-EU maxima. 

 

 

Figure 3.21. Humidity day-night difference. Blue solid line: difference between C-EU averages. Red dashed line: 
difference between C-EU maxima 

3.6 Conclusions and inputs to Virtual Observatory 
 

The comparison of temperature and humidity profiles of IASI and RAOB instruments has been 

considered in Central Europe (C-EU) in order to understand both the vertical smoothing and the 

spatio-temporal mismatch of IASI in the comparison with RAOB radiosonde profiles. To do this the 

information content of RAOB data has been assessed w.r.t. to vertical sampling using GRUAN as a high 
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vertical resolution reference. This resulted in sparseness uncertainty and processing uncertainties 

which are useful to understand the behavior of total co-location uncertainty.  

The assessment of vertical smoothing uncertainty has been based on radiosounding harmonization 

w.r.t. the strongly vertically smoothed IASI product. The proposed method is based on flexible GEV 

weight function and has the capability to estimate the vertical smoothing even in the absence of 

detailed information about averaging kernels used for the satellite retrieval. In fact, in this co-location 

exercise based on NOAA’s NPROVS dataset, the averaging kernels were not available.  

Note that, although the algorithm proposed in Section 3.4 considers a time invariant vertical 

smoothing, in the version under development for the Virtual Observatory of WP5, a dynamic 

procedure which covers seasonal and daily atmospheric variability will be used. As a consequence, the 

results of this D3.4 are expected to give an upper limit for the adjusted co-location uncertainty which 

will be obtained using a time varying harmonization algorithm. 

Temperature: Vaisala-GRUAN processing uncertainty is nearly constant and about 0.12 K up to 300 

hPa. It increases up to 0.39 K in the lower stratosphere, possibly due to solar radiation. Once Vaisala-

GRUAN processing uncertainty is eliminated, vertical sparseness uncertainty of RAOB profiles is 

smaller than 0.48 K below 300 hPa but increases to about 1 K in lower stratosphere. Vertical smoothing 

uncertainty, in comparison to total and co-location uncertainties is roughly constant, about 0.5 K, 

slowly decreasing up to 300 hPa; above this level, it increases more than co-location uncertainty which 

is more stable. The spatio-temporal mismatch uncertainty is based on the co-location uncertainty 

adjusted for vertical smoothing and considered as a function of air distance and co-location delay. As 

a result, overall in C-EU, co-location uncertainty is smaller than 1.5 K, except near ground level, where 

it reaches 1.8 K. But large uncertainties (3.0-3.3K) are observed when both air distance and delay are 

large. 

Humidity: Vaisala-GRUAN processing uncertainty has an approximately linear decrease from 0.1 

g/kg at 925 hPa to about 0.01 g/kg at 300 hPa. Once this Vaisala-GRUAN processing uncertainty is 

eliminated vertical sparseness uncertainty is smaller than 0.22 g/kg up to 500 hPa and smaller than 

0.05 g/kg above. On the other side, considering humidity, total and vertical smoothing uncertainties 

have a maximum near 800 hPa and above they smoothly decrease. In particular vertical smoothing 

uncertainty decreases to zero faster than the other two involved uncertainties. Overall, this shows 

that the co-location uncertainty can be considered small in C-EU at all pressure levels, say smaller 

than 1 g/kg. But large uncertainties (1.5-3.0 g/kg) are observed when both air distance and delay are 

large, in particular around 550 and 720 hPa. 

Inputs to Virtual Observatory 

The “Virtual Observatory” (VO) under development by WP5 will enable end users to the access and 

use of satellite to non-satellite data comparisons, to explore, interrogate, extract and analyse co-

locations between satellite data and high-quality reference and baseline network data. The Virtual 

Observatory shall be built to showcase potential methods. Nevertheless, the VO design will allow to 

operate it subsequently as an operational service, though within GAIA-CLIM shall only serve as a proof-

of-concept facility.  
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From the work described above three main outputs will be offered to the end users through the VO: 

sparseness and processing uncertainties of RAOB products; vertical smoothing uncertainties and 

harmonized RAOB profiles; and joint spatio-temporal mismatch uncertainty for RAOB-IASI co-

locations. These WP3 outputs may be pre-computed and used as inputs to be uploaded off-line to VO.  

Regarding Hermite splines, the possibility to implement a “spline engine” in the VO will be considered 

in D3.5 and evaluated with respect to the alternative to upload to VO pre-computed high resolution 

spline outputs. 

Sparseness and processing: This kind of uncertainty analysis is available only for GRUAN sites. The 

outputs will be in the form of uncertainty profiles to be attached off-line to the relevant RAOB profiles 

and made available to the end users of the VO. 

Vertical smoothing: The outputs of the above vertical smoothing uncertainty analysis are in the form 

of harmonized profiles, which can be off-line uploaded to VO. Similarly, the adjusted co-location 

uncertainties should be attached off-line to the IASI-RAOB co-locations. 

Spatio-temporal mismatch: The co-location uncertainty has been estimated for temperature and 

humidity as a function of air distance and delay, at pressure levels available for IASI.  

Hence, 3D contours plot of the uncertainty will be made available through the VO, either as numerical 

look-up tables or graphical representations. As a result, this tool allows the user to retrieve the co-

location uncertainty for IASI temperature and humidity profiles. Moreover, given an uncertainty 

threshold 𝑢0,  which may rise from a specific end-user application, it will be easy to check if a specified 

co-location (𝑥𝐺 , 𝑥𝑆), at spatio-temporal distance (𝜕𝑎, 𝜕𝑡), satisfies the uncertainty requisite in the form 

𝜎(𝜕𝑎, 𝜕𝑡) < 𝑢0. More interestingly, this approach allows a co-location system to select all co-locations 

satisfying an uncertainty requirement 𝑢0 fixed by the user. Notice that, this can be done either for a 

fixed uncertainty threshold 𝑢0 or for an uncertainty threshold profile 𝑢0(𝑝).  

4 Temperature and humidity profiles: radiosonde 
temporal mismatch 
 
The goal of this activity is to enable estimation of the co-location uncertainty in non-simultaneous 

temperature measurements due to atmospheric variability, both in terms of the systematic bias 

between measurements and the random noise. The availability of such information provides an 

estimate of temperature mismatch uncertainty for any given site using global reanalysis data, and 

would enable an appropriate sampling strategy to be put in place for a given intercomparison 

measurement application in order to meet a defined comparison uncertainty requirement.  

Previous work (Butterfield and Gardiner, 2015) established that 4 launches per day (or 6 hourly 

updates) provided a reasonable measure of the variability during the day. It also provided estimates 

from actual sonde datasets, as a function of time of day, altitude and season – but only available for 

the very limited number of sites that provide long-term data at the required high level of sonde launch 

frequency. The objective of the work within GAIA-CLIM is to extend this analysis, through the use of 

ECMWF re-analysis model data, to provide a globally-applicable co-location uncertainty assessment 

tool. This work has initially focused on temperature measurements, and is being extended to humidity. 
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4.1. Methodology 
 

Radiosonde temperature readings and modelled temperatures are processed in the same way by 

amalgamating into altitude bins 500m high, labelled as the centre of each bin, i.e. 0 to 500m labelled 

as 250m. As the ERA-Interim altitude data is represented as local altitude it is first corrected to height 

above sea level so it can be directly compared with the radiosonde data. The temperatures in each 

altitude bin are averaged to provide a mean temperature, T, for that specific altitude. The rate of 

change in temperature between single launches 6 hours apart, at each altitude, were calculated 

according to Eqn (4.1). The mean rate of change in temperature between each launch separation and 

altitude,
𝑑𝑇

𝑑𝑡𝑛
, for a defined group of launches were then calculated according to Eqn (4.2).  

 
𝑑𝑇

𝑑𝑡𝑛
=

𝑇𝑛−𝑇𝑛−1

𝑡𝑛−𝑡𝑛−1
  (4.1) 

Where tn is the launch time for the sonde. 

 
𝑑𝑇

𝑑𝑡𝑛

̅̅ ̅̅
=

∑
𝑑𝑇

𝑑𝑡𝑛

𝑖
 (4.2) 

Where i = the number of launch pairs. 

The result of this calculation provides the mean rate of change of temperature as a function of altitude 

for launches grouped by time of day and season across the datasets being investigated, with the 

standard error on the mean providing a measure of the random uncertainty resulting from the 

variability observed for that particular grouping. 

 

4.2. Comparison between radiosonde and ERA-Interim 
reanalysis 

 

The spatial resolution of the ERA-Interim data set is approximately 80 km on 60 vertical levels from 

the surface up to 0.1 hPa. As the ERA-Interim model is available at different spatial grid resolutions, a 

comparison was made between temperature data produced at grid resolutions of: 0.5o x 0.5o, 0.75o x 

0.75o, 1.0o x 1.0o and 2.0o x 2.0o, corresponding to the Lindenberg radiosonde launch site for the period 

2009 to 2012. Figure 4.1 shows an example of this comparison. For altitudes above 500m the 

differences in the mean rate of change in temperature for each grid size was below 0.005 K per hour 

when compared to the 1o x 1o result. Based on this it was decided that a grid size of 1o would be used 

for all future data processing. 
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Note: +ve result means that result is larger than the 1o x 1o result. 

Figure 4.1. (a) Lindenberg, mean rate of change in temperature between 01LT and 07LT (b) Difference between 
each grid size and the 1o x 1o result for the 01LT – 07LT. 

Comparisons between ERA-Interim (1o x 1o grid) and radiosonde temperature stability data were then 

made for 3 long-term radiosonde data sets: Lindenberg 1999 – 2008 (Vaisala RS90), Lindenberg 2009 

– 2014 (Vaisala RS92-SGP), Southern Great Plains  2006 – 2014 (Vaisala RS92) and 1 short-term data 

set: Manus Island 24th September 2011 to 31st March 2012 (Vaisala RS92-SGP).  

As only 2 GRUAN sites regularly launch radiosondes on a 6 hour frequency, the global extent of the 

investigation was extended by analysing the temperature stability of the ERA-Interim data at 12 

GRUAN site locations as detailed in Table 4.1 below, over the same period as when GRUAN data is 

available. 

 

Location Latitude Longitude Elevation, 

m above sea level 

Period 

Ny Alesund 78.92 N 11.92 E 5 01/01/11 to 31/12/14 

Barrow 71.32 N 156.61 W 8 01/01/09 to 31/12/14 

Sodankyla 67.37 N 26.63 E 179 10/09/10 to 31/12/14 

Lindenberg 52.21 N 14.12 E 98 01/01/09 to 31/12/14 
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Lauder 45.05 S 169.68 E 370 11/12/12 to 31/12/14 

Potenza 40.60 N 15.72 E 720 22/02/11 to 31/12/14 

Boulder 39.95 N 105.20 W 1743 15/06/11 to 31/12/14 

SGP 36.60 N 97.49 W 320 01/01/06 to 31/12/14 

Tateno 36.06 N 140.13 E 31 01/01/10 to 31/12/14 

La Reunion 21.00 S 55.00 E 2200 01/01/10 to 31/12/14 

Darwin 12.43 S 130.89 E 35 01/01/10 to 31/12/14 

Manus 2.06 S 147.42 E 6 01/01/11 to 31/12/14 

Table 4.1. Location of GRUAN sites selected for ERA-Interim Analysis. 

The standard error of the mean can be taken as an estimation of the uncertainty of the mean value as 

it quantifies both the scatter in the data and the sample size. If the data points are normally distributed 

the standard error of the mean will reduce as the sample size increases, at the rate of the square root 

of the sample size. To test if this is really the case for the distribution of rates of change in temperature 

for RS-92 radiosonde and ERA-Interim data sets, the data sets were randomly sampled over variable 

sample sizes. The standard error was calculated from the resampled standard deviations and 

compared to the theoretical standard error for the different sample sizes. Figure 4.2 shows an example 

of the comparison of the resampled standard error compared to the theoretical standard error –  in 

this case for the two ECMWF sites with the lowest and highest standard deviation in mean rate of 

change in temperature at an altitude of 15 km. The excellent agreement between the resampled and 

theoretical results confirmed that the data behaves as a set of stationary variables. 
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Figure 4.2. Resampled standard error and theoreical standard error of the mean rate of change in temperature 

for Tateno and Ny Alesund ECMWF sites at an altitude of 15,000m. 

 

The variability in temperature stability data at 6 altitudes (3250m, 5250m, 8250m, 12250m, 15250 

and 20250m) was then determined for both ERA-Interim and radiosonde data sets by repeatedly 

sampling the data with different sample sizes to determine how many data points would be needed 

to achieve a particular level of mismatch uncertainty, and therefore what would be needed for a valid 

radiosonde / model / satellite overpass intercomparison with a given uncertainty specification. Figure 

4.3 provides examples of these analyses, showing the standard deviation of rate in change in 

temperature at an altitude of 5.25 km for (a) the radiosonde and ERA-Interim data for the 3 long-term 

data sets, and (b) the ERA-Interim data for the 12 selected GRUAN sites. 
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Figure 4.3. (a) Standard deviation of rate in change in temperature of radiosonde and ERA-Interim data 

for the 3 long-term data sets. (b) Standard deviation of rate of change in temperature of ERA-Interim data for 

12 GRUAN sites. 

The results shown in Figure 4.3a above show clear differences in the random component of the 

difference between the radiosonde and ERA-Interim data. Differences are also seen in the systematic 

value of the rate of change in temperature. Such differences are to be expected as the derived 

mismatch values are a combination of the underlying atmospheric variability and the uncertainty due 

to the particular measurement (or model) technique. However, if the differences between the two 

methods lie within the expected uncertainty bounds of the methods, then this gives us confidence 

that they are in agreement, and providing a reliable estimate of the underlying atmospheric variability.  

A detailed study of the uncertainties in a GRUAN-processed RS-92 radiosonde profile is presented in 

Dirksen et al, 2014. There will also be uncertainties in the ERA-Interim results, both from the 

meterological model itself, and from the spatial representativeness of the model results when 

compared to the small spatial sample from the sonde results. These uncertainties are harder to 

quantify. However, if there is agreement between the two methods at, or close to, the level of the 

sonde uncertainties, then this confirms the comparability of the methods. 

As indicated above there are two elements to the uncertainty analysis – the random (uncorrelated) 

component given by the standard deviation of a large number of samples (e.g. Figure 4.3) that will 

result in an uncertainty that reduces with the number of measurements made (see Figure 4.2), and a 

systematic (correlated) component that is the difference in the underlying rate of change in 

temperature. Dirksen et al, 2014 separate the sonde measurement uncertainty sources into 

correlated and uncorrelated contributions. However, in their work correlated refers to correlation 

within one sonde ascent, and this study addresses the difference between sequential sonde launches, 

so only those uncertainty sources that remain correlated between launches would contribute to the 

systematic element. As a result the majority of the uncertainty described by Dirksen et al would 

contribute to the random component in this analysis. 

 

Table 4.2 shows the random component of uncertainty for the sonde and ERA-Interim results for 

Linbenberg (combined across seasons and launch times), and compares the difference between them 

to the predicted uncertainty in the difference between two sonde measurements based on Dirksen et 

al. These results are given separately for the mid-troposphere (Trop) and upper-troposphere/lower 

stratosphere (UTLS), as the uncertainty behavior is different in these regions. 

 Trop UTLS 

Sonde 0.283 K/hr 0.202 K/hr 

ERA-Interim 0.252 K/hr 0.148 K/hr 
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Sonde 
uncertainty 

0.035 K/hr 0.058 K/hr 

Table 4.2. Random components of uncertainty in temperature differences. 

The random component is consistently higher for the sonde measurements compared to the ERA-

Interim model, and the differences are of the order of the predicted sonde measurement 

uncertainties. This result, together with the expected differences due to the higher spatial resolution 

and therefore spatial variability of the sonde measurements, confirms the general agreement 

between the sonde and ERA-Interim results and indicates that the differences in the random 

component of the uncertainty are consistent with the expected uncertainties in the data sets. 

The magnitude of the systematic component of the temperature difference at Lindenberg is typically 

~0.021 K/hr for the sonde results and ~0.014 K/hr for the ERA-Interim data, with the difference 

between them consistently less than 0.01 K/hr (with similar results in Trop and UTLS regions). This 

level of agreement is within that expected for the likely sources of correlated uncertainties in the 

methods. 

4.3. Humidity data analysis 
 

Following the successful development of the mismatch analysis tool for temperature the scope of the 

GAIA-CLIM activity has been extended to cover humidity. A similar set of analyses is therefore being 

undertaken for radiosonde and reanalysis humidity data. Note that, in order to directly compare the 

measured and modelled results it is necessary to convert the specific humidity provided in the ERA-

Interim data to the relative humidity over water, as reported by the radiosondes. Figure 4.4 shows an 

example of the comparison between measured and modelled humidity differences, in this case for 

the Spring data in the GRUAN-processed Lindenberg radiosonde dataset. The red lines shows the rate 

of change in humidity (%RH per hour) over the indicated time period as a function of altitude (up to 

25 km) for the sonde data, while the black lines shows the equivalent assessment for the ERA-Interim 

data. 
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Figure 4.4. Comparison in the rate of change in relative humidity (% per hour) between the measured 

(red) and modelled (black) profiles at Lindenberg, shown for different times of day in Spring. (top left panel: 

01:00 to 07:00, top right panel 07:00 to 13:00, bottom left panel: 13:00 to 19:00, bottom right panel: 19:00 to 

01:00). Error bars show the standard uncertainty on the average rate of change. 

A similar exercise with the SGP data set shows the improvement that is gained by using the GRUAN-

processed humidity data rather than the standard sonde humidity data product. Figure 4.5 shows two 

examples of the rate of change profiles (upper: Spring, 01:00 to 07:00; lower: Spring 13:00 to 19:00) 

for the standard data product (left panels) and the GRUAN-processed product (right panels). 
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Figure 4.5. Comparison in the rate of change in relative humidity (% per hour) between the measured 

(red) and modelled (black) profiles at SGP for standard sonde product (left panels) and GRUAN sonde product 

(right panels), shown for different times of day in Spring. Error bars show the standard uncertainty on the 

average rate of change. 

The level of agreement between the GRUAN-processed sonde and ERA-Interim results in figures 4.4 

and 4.5 indicates that the overall method for deriving mismatch uncertainties can be applied to 

humidity as well as temperature, and a similar uncertainty analysis on the humidity differences is now 

underway to confirm this. 

4.4. Conclusions 
 

The work on temporal mismatch uncertainties in radiosonde profiles provides a direct means of 

estimating the temporal mismatch uncertainty in temperature as a function of altitude, season and 

time of day, for the selected sites using ERA Interim model data. This approach has been validated by 

comparing the ERA Interim results with GRUAN-processed radiosonde data from those sites where 

long-term high frequency data is available. Analysis of the results have shown that the differences 

between the radiosonde and ERA-Interim temperature data can be explained by the expected 

uncertainties in the different data sources. Similar studies are underway for the humidity data, and 

this has already demonstrated the improved agreement between measured and modelled differences 

when the GRUAN-processed humidity data is used in the analysis. A paper summarising the overall 

results of this study is in preparation. This work has been based on the available reference data with 

traceable uncertainties i.e. the GRUAN RS92 sonde dataset. As additional reference datasets and 
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uncertainties become available they can be integrated into this analysis. This will be particularly 

relevant with higher temporal resolution data 

5 Ozone profiles 
 

Vertical ozone profiles are measured from the ground with a variety of techniques, covering both in-

situ measurements (balloon-borne ozonesondes) and active (LIDAR) and passive (MWR, FTIR) remote 

sensing. Each technique has its own distinct properties in terms of vertical coverage and resolution, 

temporal coverage and resolution, measurement uncertainty etc. While a large body of literature 

exists on the vertical properties of these measurements, we present here new results on the impact 

of the horizontal and temporal smoothing properties, in particular in the context of using these data 

for the validation of satellite measurements.  More specifically, we look here at the impact of (1) 

balloon drift on ozonesonde measurements, (2) the low elevation angle of the line-of-sight used in 

MWR measurements, and (3) the significant integration times required for precise O3 profile 

measurements with LIDAR systems.  The method used is based on a sophisticated simulation of 

measurements and observing systems, including their full 4-D spatio-temporal sampling and 

smoothing characteristics, as implemented in the OSSSMOSE system developed at BIRA-IASB. 

Integration in the Virtual Observatory 

The Virtual Observatory developed in WP5 of GAIA-CLIM will offer access to O3 profile data from 

ozonesondes, LIDAR instruments, and FTIR instruments contributing to the NDACC. Besides a focus on 

the “reference” quality of the measurement in terms of traceability and uncertainty quantification, 

part of the aim is also to provide the user with estimates of the additional uncertainties due to spatio-

temporal features such as the balloon drift and temporal integration described here. Since performing 

OSSSMOSE simulations within the VO environment is beyond the scope of the current project, the 

results described below for representative case studies will be extended to all NDACC-contributing 

stations and converted into look-up tables that can easily be used within the VO. More specifically, for 

each station a look up table will be constructed that contains altitude-resolved mean (i.e. 

“climatological”, as derived from multiple years of data) spatio-temporal smoothing and sampling 

errors and their spread.  Further details and illustrations of the use of these look up tables will be 

provided in D3.5.   

5.1 Ozonesondes: balloon drift 
 

Ozonesondes and the corresponding long-term data records play a fundamental role in the monitoring 

of the vertical ozone profile throughout the troposphere and into the lower stratosphere, addressing 

scientific needs regarding stratospheric ozone recovery, tropospheric ozone pollution, and ozone as a 

climate forcing agent. Moreover, they provide crucial in-situ reference data for the ground-based 

validation of satellite ozone profilers (e.g. Keppens et al., 2015, and Hubert et al., 2016). While great 

effort is being invested in the homogenization of the ozonesonde network and in controlling and 

minimizing the measurement uncertainties, e.g. within the O3S-DQA, the impact of (horizontal) 

balloon drift on the representativeness of the measurements has hitherto remained uninvestigated. 
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In this section, we address this gap with a quantification of the errors and uncertainties due to balloon 

drift using an Observing System Simulation Experiment (OSSE) performed with the OSSSMOSE system 

and using the latest generation of global ozone reanalyses: MERRA-2 and the MACC (now CAMS) IFS-

MOZART reanalysis. We quantify how drift-related errors depend on altitude, season, particular 

atmospheric regimes, etc. In many cases, these errors exceed the (random) measurement 

uncertainties. Finally, we put these results in context of ozonesondes as a source of reference data for 

satellite validation, and how balloon drift can/must be taken into account in order to optimize their 

fitness-for-purpose for the upcoming Copernicus validation work. 

Balloon drift statistics as derived from radiosonde networks 

Balloon drift has hitherto not been studied on a global scale for ozonesondes. However, since the 

weather balloons used for ozonesonde launches are similar to those used in the extensive radiosonde 

networks, a first estimate of drift statistics can be obtained from published statistical analyses on 

those radiosondes. Indeed, while the payload for an ozonesonde is significantly heavier than that of a 

regular radiosonde, this is compensated by a larger balloon in order to ensure similar ascent rates (R. 

Van Malderen, Belgian Met Office, KMI, private communication). Assuming a strong coupling between 

horizontal wind components and the balloon movement, this should also lead to similar balloon drift 

trajectories. Seidel et al. (2011) present such an analysis of radiosonde drift trajectories and their 

figure summarizing the median drift distance (at the highest level, i.e. just before balloon burst) during 

northern winter months is shown in Figure 5.1. As is clear from this graph, drift distances vary 

considerably across the globe, from less than 25km in northern Brazil up to 200km and more near 

Japan in winter.  

 

Figure 5.1. Median drift distance at the highest level reached by the balloons of the global radiosonde network, 
during northern winter months (December, January, and February), as derived by Seidel et al. (2011). 

To what extent this balloon drift leads to an ozone concentration measurement that differs 

significantly from that directly above the station depends not only on the drift distance, but also on 

the local variability of the ozone field. To gauge this variability across the globe, we looked at the 
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variability in global reanalysis fields at a scale of a few hundred kilometres. Such a map, corresponding 

to the variability in the UT/LS ozone column for northern winter months, is shown in Figure 5.2.   

 

Figure 5.2. Variability in the UT/LS ozone column during northern winter months (December, January, and 
February) as caught by the IFS-MOZART reanalysis performed for MACC (now CAMS). 

Combining this graph with Figure 5.1, we can expect very little impact due to balloon drift on the ozone 

measurements in equatorial regions, in particular in South America, while Japan shows both large drift 

distances and strong spatial variability in the ozone field, which will most likely lead to large 

differences between the measured ozone profile and the vertical profile at a (hypothetical) launch 

station.  It should be kept in mind though that the variability in the ozone field is mostly due to 

advection and thus correlated with the local wind field. As such, the actual impact on the 

representativity of the measurements may be more moderate than estimated from this qualitative 

exercise.  

Another aspect, not yet touch upon, is the time it takes the balloon to climb up to its burst point. This 

duration is typically of the order of 60-90 minutes which may in some cases also introduce significant 

errors w.r.t. the ozone field at the time of the sonde launch.    

The above considerations and concerns warrant a more in-depth quantification of the impact of 

balloon drift and ascent duration on the measured ozone profile. In the next section, we present an 

OSSE-based calculation of the errors and uncertainties that result from the balloon trajectory that 

takes into account the actual interplay between balloon trajectory and local ozone field.  

OSSSMOSE simulation of ozonesonde balloon drift errors 

To arrive at a detailed, quantified estimate of the difference between the profile measured by an 

ozonesonde and that above the launch station, we used the OSSSMOSE system (Verhoelst et al., 2015) 

to trace actual ozonesonde trajectories in 4-D reanalysis fields and extract the corresponding 

simulated “measured” profile, which can then be compared to the reanalysis profile above the launch 

station. This is illustrated in Figure 5.3. 
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In essence, simulating the measured profile comes down to interpolating the reanalysis on the 4-D 

(lat,long,altitude, time) coordinate of every measurement during an ozonesonde ascent. For every 

simulated ascent, this allows us to calculate the drift “errors”, i.e. the differences w.r.t the vertical 

profile at the launch time. By analyzing a large set of such difference profiles, e.g. covering several 

years of actual ozonesondes launches at a monitoring station, we can deduce both random and 

systematic statistical properties of these drift errors, as a function of altitude, season and particular 

atmospheric phenomena.  

 

Figure 5.3: Illustration of the difference between the station zenith(grey markers) and the actual trajectory of 
an ozonesonde launched by the Belgian Met Office (KMI) from Uccle (Brussels) on 29 February 2008. Also a few 
slices of the corresponding MERRA-2 ozone reanalysis are shown to illustrate the spatial inhomogeneity of the 
ozone field at these scales and altitudes.  

Based on the information in Figures 5.1-6.2 and the locations of the NDACC stations with well-sampled 

time series of ozonesonde launches, two distinct case studies were chosen here: Paramaribo, 

Suriname (5.75˚N, 55.2˚W, weekly launches by KNMI) as representative for small drift distances and 

low ozone field variability, and Hohenpeißenberg, Germany (47.8˚N, 11.0˚W, 3 launches per week by 

DWD) as representative for larger drift distances and significant ozone field variability.  Results for 4 

years of launches (2008-2011) at these 2 stations are shown in Figures 5.4-6.5. Averaged over these 
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years, no large systematic  errors are observed and the maximum uncertainty is of the order of 2% 

and 4% respectively  (in the upper troposphere).  In fact, the maximum spread in the upper 

troposphere is due to the combination of atmospheric variability and drift distance being largest at 

these altitudes. Going higher up, in the lower stratosphere, the drift distances are even larger, but the 

ozone field becomes much smoother and consequently the errors due to the drift decrease. In both 

cases, the probability density distribution (PDF) of the differences is fairly Gaussian, with non-

negligible tails up to differences of 10% for launches at Hohenpeißenberg.  

 

Figure 5.4: OSSSMOSE simulation of errors in ozone concentrations due to balloon drift and elapsed time since 
launch, at the equatorial NDACC station of Paramaribo, Suriname (5.75˚N, 55.2˚W, weekly launches by KNMI.  

 

Figure 5.5: OSSSMOSE simulation of errors in ozone concentrations due to balloon drift and elapsed time since 
launch, at the northern mid-latitude NDACC station of Hohenpeißenberg, Germany (47.8˚N, 11.0˚W, 3 launches 

per week by DWD). 
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Implications, conclusions, and caveats 

The two cases studies detailed in the previous section illustrate that the errors due to balloon drift 

depend strongly on launch location. When the drift distances are small and the ozone field relatively 

stable, e.g. at Paramaribo, the simulated errors remain below typical measurement uncertainties, 

which are estimated to be of the order of 3-5%. Indeed, when standard operating procedures are 

followed, the three most commonly used sonde types1 produce consistent results between the 

tropopause and 28 km, with biases smaller than 5% and precisions better than 3% (Smit and ASOPOS 

panel, 2014). At higher and lower altitudes the data quality degrades somewhat, and the differences 

between the sonde types become more clear. Overall, ECC-type sondes perform best with a bias of 5–

7% and a precision of 3–5% in the troposphere. Consequently, in this case, the errors due to balloon 

drift also remain below the accuracy targets for the use of ozonesondes as reference data in satellite 

validation work. On the other hand, when drift distances are >100km and the ozone field is 

inhomogeneous, the errors do become comparable to the measurement uncertainty and will 

contribute to the error budget of a comparison with other measurements when not minimized, e.g. 

by doing a height-dependent co-location, or taken into account by adding an additional uncertainty 

term in the consistency test (σ in Eq. 1.1).    

It is important to be aware of the limitations of the OSSSMOSE simulations behind these results, in 

particular the horizontal and temporal resolution of the reanalysis fields that were used (typically of 

the order of 1˚x1˚ and 3 hours respectively). Some preliminary comparison between the variability 

caught by the reanalysis and that observed in in-situ aircraft data by Sparling et al. (2006) suggests 

that the intra-pixel variability can not be neglected, and the simulations here are to be taken as lower 

limits on the actual drift errors. In view of this limitation, it is recommended to address balloon drift 

in a validation exercise by doing an altitude-dependent co-location, rather than by including an 

additional uncertainty term in the comparison uncertainty budget.  For satellite sounders with high 

horizontal but poor vertical resolution, some satellite pixel averaging may be required when the 

balloon traverses multiple satellite pixels in a single vertical layer.  

5.2 Ozone MWR: elevation angle of the line-of-sight 
 

Because of its low sensitivity to weather conditions and aerosol load, ground-based millimeter 

radiometry is well suited for observations of stratospheric and mesospheric ozone. The technique was 

first explored in the early 80s (e.g. Wilson & Schwarz, 1981) and nowadays six micro-wave radiometers 

(MWR) routinely contribute O3 profile measurements to the NDACC, with a further 3 instruments in 

the “candidate” phase. These instruments measure the emission of a thermally excited rotational 

transition at either 110 or 142 GHz.  From these line spectra, O3 volume mixing ratios are derived using 

an optimal estimation retrieval technique, relying on the pressure broadening of the line to 

disentangle different altitudes (i.e. different atmospheric pressures).  A valuable proxy of the 

measurement sensitivity and vertical resolution is provided by the averaging kernel (AK). An example 

                                                           
1 Nowadays more than 80% of the stations launch an electrochemical concentration cell (ECC) sonde (Komhyr, 
1969). The Brewer–Mast sonde has mostly been used by the early sounding stations with long data records 
(Brewer and Milford, 1960), while the Japanese stations fly a carbon iodine cell sonde (Kobayashi and Toyama, 
1966). 
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AK, corresponding to a night-time measurement at the NDACC station of Mauna Loa, Hawai’i (19.54°N, 

155.58°W, 3397m a.s.l.), is shown in Figure 5.6. While the profile is sampled on a relatively fine grid 

(49 levels between 12km and 108km) the actual vertical resolution (taken here to be the full-width-

at-half-max of the AK rows) ranges from a best of 6km at approx. 30km to 14km and worse above 

65km.  

One of the key applications of MWR measurements is the study of the diurnal cycle of O3, which is 

very strong above about 45km/1hPa (e.g. Connor et al., 1994) but not negligible in the middle 

stratosphere either (e.g. Parrish et al., 2014).  These studies are facilitated by the near-continuous 

measurement cycle, with retrievals performed on data integrated over a (few) hour(s) or so. 

Operational products are typically provided on 6-hourly intervals, but much higher sampling is possible 

as well, e.g. to study the abrupt changes at sunrise/sunset in the mesosphere.  

In the context of validation of satellite O3 profiles, MWR play a key role in extending the ground-based 

reference to altitudes not accessible by balloon sondes or LIDAR measurements. A recent application 

in the context of stability validation of limb sounders was presented by Hubert et al. (2016). A critical 

step in such validation work is the spatio-temporal co-location between ground-based and satellite 

measurement. While the ground-based measurements is usually associated with the location of the 

station, this assumption may not be optimal for MWR measurements, given their particular viewing 

geometry and measurement principle. This is the topic of this section.  

 

Figure 5.6: Typical vertical averaging kernel for an O3 MWR measurement during night time at NDACC station of 
Mauna Loa, Hawai’i (19.54°N, 155.58°W, 3397m a.s.l.). To guide the eye, the black solid line represents the 
diagonal, where sensitivity ideally peaks. The apparent thermospheric sensitivity (at retrieval altitude 95km but 
true altitude 80km so upper mesosphere in reality) is not present during day time when most of the ozone at 
this altitude is destroyed more rapidly than it can be reformed because of the low local air density.  
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The line-of-sight and its projection on the ground 

We can expect horizontal smoothing and sampling errors in O3 MWR measurements for two reasons: 

(1) the non-zenith viewing angle, and (2) the sometimes significant integration times (several hours) 

which combine with the local wind speed to smear out the small-scale structure of the O3 field. Below, 

we look in more detail at the viewing angle and how this combines with the measurement sensitivity 

to cause an offset between the location of actual measurement sensitivity and that of the station.   

As a representative illustration, we show in Figure 5.7 the distribution of the elevation angles of 6 

years of measurements with the O3 MWR at the NDACC site of Mauna Loa. At this station, a fixed 

azimuth angle is used (5˚ East-of-North) but the elevation angle is adjusted to compensate for 

weather-induced variations in the tropospheric opacity. In case of high tropospheric humidity 

elevation angles up to 24˚ are used to minimize the tropospheric path length. In very clear conditions, 

observations are done as low as 10˚ above the horizon. On average, the elevation angle is 14.1˚.   

 

Figure 5.7: 2D histogram of the LOS of all measurements made with the O3 MWR at Mauna Loa between 2005 
and 2010 (grayscale). The mean and median LOS are indicated in red and yellow respectively. The green lines 
represent the 1-sigma standard deviation. No measurements are made below about 11˚ or above 24˚. The 

orange dashed lines indicate the altitude range for which this geometric projection is a reliable estimate of the 
true horizontal offset of the measurement sensitivity.  

Figure 5.7 also shows the corresponding horizontal distance from the station for each altitude level, 

by pure geometric projection. To what extent this also represents the horizontal offset of the actual 

measurement sensitivity depends on the vertical distribution of the measurement sensitivity, which 

is quantified in the vertical averaging kernel. From Figure 5.6, and in agreement with Parrish et al. 

(2014), we conclude that the bulk of the sensitivity is close to the true altitude from the lowest levels 

up to about 70km. Hence, for this altitude range, a pure geometric projection as in Figure 5.7 can be 



 
   

 
GAIA-CLIM technical report 
D3.4 – Measurement mismatch studies and their impact on data comparisons 
 

 

54 

 

used to estimate the horizontal offset of the measurement sensitivity w.r.t. the station location. 

Mathematically:  

tg
d

z
r  , 

where rd  is the distance from the station, z  the altitude, and   the elevation angle. Or, expressed 

as offsets in latitude and longitude (similar to Lambert et al., 2011): 
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where  d  is the offset in latitude, TR  the radius of the Earth,    the viewing azimuth angle (East-

of-North), d  the offset in longitude, and 0  the latitude of the station.  

Higher up, night-time observations also contain significant sensitivity but at altitudes slightly below 

the retrieval altitude (see the caption of Figure 5.6). The offset of the actual sensitivity is therefore 

somewhat smaller at these altitudes than estimated from the geometric projection, and the extreme 

offset values (>450km) in Figure 5.7 are probably never reached.  

OSSSMOSE simulation of the errors induced by the non-vertical line-of-sight 

In the section above, the horizontal offset between station and the location of the actual 

measurement sensitivity was estimated to be of the order of several hundred km for the upper 

stratosphere and lower mesosphere. The assumption that a measurement was made at the station 

zenith may therefore introduce significant errors when the ozone field is variable on these scales. 

Below, we quantify these errors using the OSSSMOSE simulation system (Verhoelst et al., 2015). The 

approach consists in simulating the actual measurements by interpolating 4-D reanalysis fields either 

on a vertical at the station location or along the LOS described in the previous section, and this at the 

times of the actual measurements provided through the NDACC archive.  This is illustrated in Figure 

5.8 for a measurement with the MWR at Lauder, New Zealand (45.04˚S, 169.68˚E, 370m a.s.l.).   

The reanalysis of choice here is MERRA-2, in particular because of its good temporal sampling (3-

hourly) compared to other reanalyses, an important asset in view of the diurnal cycle of O3 in the 

higher stratosphere and mesosphere. Above about 45km/1hPa the diurnal cycle is so non-linear that 

further interpolation of the reanalysis fields to the actual measurement time leads to aleatory 

behavior and we chose instead to use fields as close as possible to the measurement time, i.e. always 

within 1.5h.   
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Since the aim of a ground-based measurement is usually to derive the profile above the station, i.e. at 

zenith, we take the zenith profile to be the reference and look at the difference between the profile 

along the LOS and that at zenith: 

)()()( izenithiLOSi zxzxzx  , or as a relative quantity: 
)(

)()(
)(

izenith

izenithiLOS
i

zx

zxzx
zx


 , 

where  x refers to the ozone concentration and iz  to a certain altitude level.  

 

Figure 5.8: Visualisation of the OSSSMOSE simulation of both the zenith and actual LOS profiles at the time of a 
MWR measurement at Lauder, New Zealand. This graph is similar to the one in Figure 5.3, except for the model 
slices which are here shown on their native resolution, instead of the interpolated (smoothed) visualisation 
chosen for Figure 5.3. For clarity, only 6 MERRA-2 slices are shown, each converted to a local anomaly (difference 
w.r.t. the local horizontal mean at that altitude). The red marker indicates the station location and the black 
lines denote the zenith and actual LOS. Note that due to the different vertical and horizontal scales, the elevation 
angle appears much larger than it really is (19˚ in this case). Remark the extension to higher altitudes compared 
to Figure 5.3, and how much smoother the field is at these altitudes. 

Two case studies will be elaborated here: the MWR operated by the Naval Research Laboratory at the 

tropical station of Mauna Loa, Hawai’i (19.54°N, 155.58°W, 3397m a.s.l.) and the MWR operated by 

NIWA at the mid-latitude station of Lauder, New Zealand (45.04°S, 169.68°E, 370m a.s.l.). From both 

instruments, extensive long-term data sets are available.  Simulation results for 6 years of 

measurements at these two stations (covering the period 2005-2010) are shown in Figure 5.9. At 
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Lauder, differences remain in general (1-σ standard deviation) below 1%, except at the lowermost 

altitudes (below 25km) and above 55km. This is the result of the interplay between altitude-

dependent atmospheric variability and increasing horizontal sensitivity displacement.  Higher up (not 

shown), the differences increase rapidly, but this may be due to shortcomings in the simulation in 

dealing with the pronounced non-linear diurnal cycle of ozone at these altitudes so this needs further 

investigation. At Mauna Loa the differences are similar to those at Lauder in the middle to upper 

stratosphere, but they are larger at and below 20km, including some systematic effects. Identifying 

the cause of this requires further investigation as well. Typical measurement uncertainties (as 

provided with the data) at both stations are of the order of 4-5% random uncertainty and 6-8% 

systematic uncertainty.  For a large part of the data sets, these measurement uncertainties can 

therefore be assumed to be larger than the “errors” due to the non-vertical LOS. 

While the horizontal resolution of the MERRA-2 reanalysis is state-of-the-art for global chemical 

models (of the order of 80km), this is not necessarily sufficient to capture the small-scale variability of 

the ozone field, in particular at the lower levels. The significant integration times of the MWR 

measurements (of the order of an hour or more) however translate into horizontal smoothing because 

of the non-negligible wind velocities in the free troposphere and above. Consequently, the OSSSMOSE 

simulations performed here should not be affected much by their inability to resolve the smallest 

structures at the lowermost levels. 
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Figure 5.9. OSSSMOSE simulation of the difference in O3 profile between the vertical at the station and the actual 
line-of-sight (LOS) of the O3 MWR measurements at Mauna Loa, Hawai'i (upper panel) and Lauder, New Zealand 
(lower panel) . The grayscale represents the 2D histogram of the differences, the coloured lines some statistical 
properties. The mean and median are a proxy of the long-term systematic difference, the standard deviation 
(stdev) is a proxy of the random component.  

An “effective” measurement location 

Returning to Figure 5.7, it can be argued that the location of the instrument is not representative for 

the “mean” location of the measurement. When a single location is to be assigned to a measurement, 

e.g. in the context of comparisons with satellite data or models, it may be more meaningful to 

associate the measurement with an “effective” location taken to be the projection of the LOS on the 

ground at e.g. the 45km altitude level. A simulation similar to Figure 5.9 but using this effective 

location instead of the instrument location is shown in Figure 5.10. Comparing Figure 5.9 and Figure 
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5.10 reveals that indeed, differences w.r.t. the vertical at the effective location are noticeably smaller 

than those w.r.t. the instrument location, at least above 25km.    

Based on these findings, this effective location was already used to co-locate MWR measurements 

with satellite limb measurements for recent validation work in the context of ESA’s O3 CCI project and 

for stability analyses in SPARC’s SI2N initiative (Hubert et al., 2016).  Since the main driver for the use 

of ground-based MWR measurements in satellite validation is their sensitivity in the upper 

stratosphere and lower mesosphere, above the vertical range accessible by sondes, LIDAR, and FTIR, 

the large variability and potential bias at the lowermost measurement levels is not a concern as long 

as these issues are kept in mind.  

 

Figure 5.10. Similar to the upper panel of Figure 5.9, but the differences are calculated w.r.t. the zenith at the 
“effective location”, here taken to be the ground projection (along the LOS) of the 45km altitude level, instead 
of the zenith at the instrument location. 

Conclusions 

MWR measurements of the vertical ozone profile are obtained using a line-of-sight (LOS) with a low 

elevation angle (usually between 10˚ and 20˚). This leads to a significant displacement of the location 

of actual sensitivity w.r.t the instrument location, reaching several 100km for the upper measurement 

levels. For that part of the altitude range for which the vertical averaging kernel of the MWR 

measurement is more or less diagonal, the projection on the ground of the LOS can be used to 

estimate this displacement.  From an OSSSMOSE simulation, it was found that the resulting differences 

w.r.t. a zenith measurement at the instrument location are largest below 30km and above 65km.  

Instead of associating a measurement with the instrument location, it is shown that it may be better 

to use an “effective” location, corresponding to the projection on the ground of the 45km altitude 

level following the LOS.  In general however, the measurement uncertainty remains the dominant 

source of uncertainty, leading to errors larger than the difference between LOS and zenith profile. 
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5.3 Stratospheric ozone LIDAR: integration time 
Stratospheric O3 profiles are measured with LIDAR (Light Detection and Ranging) instruments using 

the DIAL (Differential Absorption LIDAR) technique at 13 different stations (+ 1 mobile instrument) 

contributing to the NDACC (http://ndacc-lidar.org/). The DIAL technique relies on the difference in 

returned (backscatter) pulsed laser signal at two wavelengths for which the ozone cross sections are 

significantly different (Kobayashi & Toyama, 1966).  Three of these instruments measure tropospheric 

ozone, the others cover the stratosphere (10-50km at best).  We consider here only the stratospheric 

LIDARs as these play a crucial role in validating satellite ozone profile measurement above the burst 

point of ozonesonde balloons. The typical measurement uncertainty (from internal estimates, from 

network homogeneity, and from comparisons with other measurement techniques) is better than 5% 

up to the ozone maximum but degrades to 10-30% in the upper stratosphere (McDermid et al., 1990, 

Godin-Beekmann et al., 2003, and Keckhut et al., 2004). The vertical resolution is of the order of 300m 

at the bottom of the measured profiles, i.e. near the tropopause, but degrades to 3km and worse in 

the upper stratosphere (Godin et al., 1999). Note that at these higher altitudes, the profile is strongly 

oversampled, i.e. measurement levels are highly correlated due to the coarser actual measurement 

resolution.  

LIDAR integration times 

Depending on the power of the laser, the meteorological conditions, length of night, etc., the typical 

total integration time ranges from an hour up to an entire night. While an individual measurement 

may in fact be of much shorter duration (a few minutes), multiple consecutive measurements must 

be averaged to reach a sufficient SNR for a meaningful ozone profile retrieval.  The distribution of 

integration times (per retrieval) for 3 well-established instruments is visualized in Figure 5.11.  

 

Figure 5.11: Histograms of the integration times for LIDAR measurements are 3 stations with extensive data sets 
between 2005 and 2010: Mauna Loa Observatory, Hawai’i (19.5°N, 155.6°W, operated by JPL), Observatoire de 
Haute Provence (OHP), France (43.9°N, 5.7°E, operated by LATMOS), and Hohenpeißenberg Observatory, 

Germany (47.8° N, 11.0° E, operated by DWD).  
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This integration time is reported in different ways across different stations, file types, and archives: 

for instance, total integration time can be reported along with the center time of the integration, or 

start and end times along with an effective mean measurement time, which takes into account gaps 

due to technical or meteorological difficulties.  

Temporal smoothing and representativeness errors: definitions 

At these temporal scales, we can expect variations in the ozone field during the integration of 

several 10s of percent, due to advection and photochemistry.  This can affect the interpretation of 

the measurements in two ways: 

1. If the evolution of the ozone concentration during the integration is non-linear, the mean 

value (i.e. the measurement) may not be equal to the value of the concentration at the 

claimed measurement time (typically the middle of the integration).  This is a temporal 

smoothing error.  Mathematically, we define it as follows: 
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where x represents the ozone concentration, iz refers to an altitude level, 0t to the nominal 

measurement time, and t  to the integration time.  

2. The ozone concentrations may vary strongly during the integration, and the mean (i.e. the 

reported) value may be representative for only a small part of the covered measurement time. 

This is considered to be a temporal representativeness error: 
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Because this representativeness error is different for every time t within the integration 

window, it makes more sense to speak of a representativeness uncertainty, defined as the 

spread (standard deviation) on the representativeness errors (following the VIM and GUM on 

the definition of uncertainty as an estimate of a dispersion): 
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where    ]2/,2/[ 00 ttttt  . 

To what extent these errors can be comparable to (or larger than) the measurement uncertainty, is 

estimated in the following section.  

OSSSMOSE simulation of the temporal smoothing and representativeness errors 

To estimate temporal smoothing and representativeness errors, we extracted from MERRA-2 

reanalysis fields the evolution of the ozone profile during the entire integration period, slightly 

oversampled to a 1-hour resolution and spatially interpolated to the exact instrument location and 

vertical grid. An example of such an extraction, for a measurement with the LIDAR installed at 

Hohenpeißenberg, is shown in Figure 5.12. 

 

Figure 5.12: Evolution of the MERRA-2 ozone profile during a 7.5-hour LIDAR integration at Hohenpeißenberg, 
normalized to the profile at the nominal measurement time, indicated by the black solid line.  This graph 
illustrates the potentially large temporal representativeness errors.  

Some general features can already be seen in this graph: the decrease in variability with increasing 

altitude (except near the ozone maximum) and the presence of both linear changes (e.g. at the lowest 

altitude in this case) and non-linear changes (e.g. at 20km and 33km). It is also striking that the 

amplitude of the variations can substantially exceed the measurement uncertainty (better than 5% in 

the lower and middle stratosphere).  In Figure 5.13, the same measurement is visualized in such a way 

that both the variability during the integration and the difference between the mean (i.e. the measured) 

profile and the profile at the nominal measurement time become clear. The former leads to a 

representativeness uncertainty, while the latter corresponds to the temporal smoothing error.  
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Figure 5.13. Variation of the ozone profile during a LIDAR integration at Hohenpeißenberg (the same 

measurement as in Figure 5.12), as captured by MERRA-2, both in absolute concentration values (left-hand 
panel), and relative to the  profile at the nominal measurement time, i.e. the middle of the integration window 
(right-hand panel).  The green curve in the right-hand panel corresponds to the (relative) temporal smoothing 
error. 

Temporal smoothing errors were simulated as described above for all measurements between 2005 

and 2010 obtained at the three NDACC stations already introduced in Figure 5.11. The results are 

shown in Figure 5.14 as a 2-D histogram and some summarizing statistics. The smallest smoothing 

errors (well below 0.5% for most of the altitude range) are estimated for the equatorial Mauna Loa 

observatory, where the ozone field is relatively stable (and varies linearly during the integration time) 

and the LIDAR integration times are fairly short (of the order of 2 hours). At the lower end of the 

altitude range, the smoothing errors are somewhat larger (occasionally up to 2%), but this remains at 

or below the measurement uncertainty. At the Observatoire de Haute Provence, integration times are 

longer (on average about 4 hours) and, moreover, the mid-latitude ozone field is more variable. 

Consequently, larger smoothing errors are estimated.  Still, only below 20km altitude do they become 

comparable to the measurement uncertainty. At Hohenpeißenberg, a mid-latitude station where 

integration times up to 12 hours are used, the smoothing errors are again larger, in particular also in 

the middle of the altitude range. In general, they still do not dominate the measurement uncertainty, 
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but further differentiation w.r.t. integration time and season may reveal regimes where smoothing 

errors become the dominant source of uncertainty. This is ongoing work. Note also that at none of the 

stations significant systematic errors (the mean or median of the smoothing errors, represented in red 

and yellow respectively) are observed. Again, this needs further differentiation, in particular looking 

for potential seasonalities.  

 

Figure 5.14: OSSSMOSE estimates of the temporal smoothing errors in 6 years of LIDAR measurements at the 3 
stations for which the distribution in integration times is shown in Figure 5.11. See the text for an in-depth 
discussion. 
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While the temporal smoothing errors are found to be relatively modest, due mostly to the fact that 

linear changes in O3 concentration during the integration time do not lead to smoothing errors (if the 

nominal measurement time corresponds to the middle of the integration window), Figure 5.12 

suggests that the temporal representativeness errors may in fact be much larger.  

 

Figure 5.15: The distribution of temporal representativeness uncertainties, and some summarizing statistics as 
coloured lines. See text for the definition and estimation method. TO DO: remove mean and replace stdev with 
a quantile because this distribution is far from symmetrical.  
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Figure 5.15 demonstrates that this is indeed the case. The temporal representativeness uncertainties 

were calculated as the spread (standard deviation) of the temporal representativeness errors, 

calculated for a selection of times within the integration window, and relative to the mean 

concentration over the total integration window (i.e. the actual measurement). For every 

measurement, this yields an representativeness uncertainty profile. These uncertainty profiles are 

analyzed in a statistical way in Figure 5.15: their distribution is visualized with a 2-D histogram. From 

the different panels in this figure, we derive a similar dependence on integration time, latitude, and 

altitude as for the temporal smoothing errors. However, the amplitudes are clearly larger: the mean 

representativeness uncertainty at Hohenpeißenberg is of the order of 1%, but 2% is far from 

uncommon in the middle stratosphere, and at the lowermost levels uncertainties up to 10% are 

common. Note that these numbers are about the representativeness uncertainty of a single 

measurement, defined as the standard deviation (1σ) of the actual errors. In other words: individual 

errors larger than the numbers discussed here are still relatively common (at least 30% occurrence  if 

the distribution is nicely Gaussian).   

Conclusions 

In this section, we investigated to what extent the potentially long integration times required for LIDAR 

measurements of the vertical O3 profile affect (1) the accuracy of the measurement (i.e. does the long 

integration lead to a temporal smoothing error in the measurement when it is assigned to the mean 

measurement time?), and (2) the representativeness of the measurement for the time period covered 

by the integration (i.e. how much does the O3 concentration vary during the integration?). We chose 

here not to visualize individual representativeness errors, but only the resulting representativeness 

uncertainty.  

In general, the OSSSMOSE simulations indicate that the temporal smoothing errors are actually rather 

limited. This is due to the mostly linear variation in the ozone concentrations at the time scale of an 

integration. Only for the longest integration times and in variable atmospheric conditions do the 

smoothing errors become comparable to the measurement uncertainty (several percent).  

On the other hand, the representativeness uncertainty is significantly larger. In the lower 

stratosphere, it can be up to three times as large as the measurement uncertainty.  This is of particular 

importance when LIDAR measurements are co-located with other measurements that fall within the 

integration time, but can thus not necessarily be expected to agree within their measurement 

uncertainties.   

Finally, we must repeat the caveat already expressed in previous sections: the OSSSMOSE simulations 

are inherently limited in their representation of small-scale variability by the resolution of the 

underlying model/reanalysis fields. As such, it may be that errors and uncertainties are somewhat 

underestimated, in particular in the lowermost atmospheric layers and when referencing against 

“singular” snap shots (e.g. the O3 concentrations at the nominal measurement time).  
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6 Aerosol: Comparison of AATSR and AERONET 

Retrieval algorithms based on passive satellite remote sensing instruments provide information on 
atmospheric aerosols on a global scale. While they are less accurate than methods based on active 
sensors (lidars), they can provide a global coverage every few days. The global AOD data can be used 
e.g. in air quality and climate studies. 

We consider the comparison of the total atmospheric column aerosol optical depth (AOD) values 
obtained with AATSR and AERONET. AERONET provides point-like observations with several 
observations per day, while AATSR provides an instantaneous glimpse of a larger area (with a revisit 
time of 2-3 days). The focus is on assessing co-location mismatch uncertainties in comparison of the 
two datasets. 

The uncertainties for the satellite based aerosol retrieval are much larger than for the AERONET 
observations. In addition, while the instrument uncertainties are propagated through the retrieval to 
produce AOD uncertainty estimates, various sources of uncertainties in the satellite retrievals remain 
unquantified. Therefore, the characterization of the co-location mismatch uncertainties is hampered 
by the incomplete uncertainty characterization of the satellite observations. Nevertheless, the 
relevant features are discussed in this section. 

6.1 AATSR description 

The European Space Agency's (ESA) Advanced Along Track Scanning Radiometer (AATSR) aboard 
ENVISAT measured the top of atmosphere (TOA) radiance at seven wavelengths (0.550, 0.659, 0.865, 
1.61, 3.7, 10.85 and 12 µm). AATSR data record extends from 2002 to April 2012, when the connection 
with ENVISAT was lost. AATSR employed an along track scanning technique, where each surface pixel 
is viewed twice, first by the 55º forward view and some 150 seconds later by the nadir view. The AATSR 
Dual View (ADV) algorithm is used to retrieve AOD over land, and the AATSR Single View (ASV) 
algorithm is used over ocean. The ADV algorithm uses the stereo view to remove the surface 
reflectance contribution from the TOA reflectance, and retrieves the best fit aerosol model and AOD 
value using inversion techniques (Kolmonen et al. 2016). 

Initial regridding 

AATSR employs a conical scanning technique, where the sampling distance varies across track and 
depending on the view. These native data are regridded to a 1 km grid, where nadir and forward views 
are collocated (level 1B data). The regridding involves 'cosmetic filling' for grid pixels with no native 
data. This takes place in particular for the forward view, as the native pixel size in the forward direction 
is larger. The different smoothing between nadir and forward views is likely to cause smoothing 
difference errors. In the retrievals the L1B regridded data provided by ESA is used. Smoothing 
uncertainty estimates related to the regridding are not available. 

The regridding differences can be seen as the difference in the level of details between nadir and 
forward view images (Figure 6.1). In the ADV/ASV algorithm, the ratio of the nadir and forward view 
surface reflectance, the k-ratio, is a crucial parameter. At coastlines, where the surface reflectance 
changes rapidly, the regridding difference errors are seen as erroneous k-ratio values, leading to 
overestimated AOD values (see Figure 6.1). The 3x3 pixel standard deviation of the k-ratio can be used 
as a qualitative indicator of the regridding difference uncertainty. 
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Figure 6.1 The regridding (smoothing) difference between the two AATSR views can be seen as a difference 
between the level of detail in the nadir view (left) and forward view (center) images of observed TOA reflectance 
at 1.6 µm over the Chesapeake bay area. The smoothing difference error leads to highly erroneous reflectance 
ratio (k-ratio) values at the coastlines (right). 

 

Cloud screening 

As part of the data sampling in ADV/ASV, cloud screening is applied. Aerosol retrieval can only be 
performed over cloud free areas. Four cloud tests are used in ADV/ASV to remove clouded pixels 
(Kolmonen et al. 2016). The tests are based on automatically adjusted thresholds for TOA reflectance 
and brightness temperature, and the relations of these at different wavelengths (Robles-Gonzales et 
al. 2003). The tests are applied separately for each viewing direction, and a pixel is considered cloud 
contaminated if any of the tests in either view flags it as cloud. 

The cloud mask is not perfect, and residual (undetected) clouds cause overestimated AOD values. Also, 
the two AATSR views are collocated on the surface level, while residual clouds are higher. The parallax 
between the two views causes dislocation of clouds, leading to further uncertainty. Setting the cloud 
mask thresholds is a trade-off between the cloud mask uncertainty and coverage. The possible cloud 
contamination is seen as a major source of uncertainty in the AOD retrieval, but it remains 
unquantified as the full characterization of the cloud mask uncertainty is outside the scope of this 
exercise. 

In addition to the cloud masks, an additional post-processing is applied to ADV/ASV data to reduce 
the effect of residual clouds (Kolmonen et al. 2016). For each retrieved 0.1º pixel the adjacent 8 pixels 
are inspected. If less than three adjacent pixels are retrieved (due to cloud screening) the center pixel 
is considered as cloud contaminated and removed. Also, if the standard deviation of AOD in the 3-by-
3 pixel area is higher than 0.1, the center pixel is removed. Applying the cloud post-processing 
improves validation results against AERONET, but removes some of the high AOD cases (Kolmonen et 
al. 2016). An improved cloud post processing method which better takes into account high AOD cases 
has recently been developed (Sogacheva et al. 2017). 

The parameters used in the cloud post-processing, the number of valid adjacent pixels and the 3x3 
pixel standard deviation, can be used as qualitative cloud contamination uncertainty indicators. They 
do not depend on the cloud tests applied, and are easy to implement. As such, they might be well 
suited to the Virtual Observatory, with adjustable thresholds for the user. 

ADV/ASV sampling 

The ADV/ASV level 2 aerosol product is provided on a 0.1º grid (~10 km resolution), called 'the coarse 
resolution'. The retrieval is performed for an area of c. 100 subpixels (depending on latitude) using the 
observed TOA reflectance in both views (L1B data). Due to surface reflectance variability, a simple 
averaging of the reflectance over all subpixels might lead to a reflectance value that is not 
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representative for the area. For example, exceptional surface conditions (e.g. sun glint from a small 
water body or urban structure) may cause extraordinarily high reflectance for one subpixel for one of 
the views. Therefore, a method to select a subset of representative subpixels is used. 

In ADV/ASV a histogram method is used to select the representative pixels in both views from a 10-
by-10 pixel retrieval area (Kolmonen et al. 2016). The reflectance values are binned and the mode 
reflectance bin is selected respectively for each view. Then the pixels which are in the mode bin for 
both views are selected for calculating the averaged reflectance for each view. A fully traceable 
sampling uncertainty of the histogram method is not calculated, but a quantitative measure is given 
by the standard deviation of the TOA reflectance of the selected 1-by-1 km pixels in the 0.1º-by-0.1º 
retrieval area. The effect of this parameter is shown in Figure 6.6 c). 

The ADV/ASV algorithm can also be run in a special high resolution mode, where the AOD retrieval is 
run respectively for each 1 km pixel. This computationally heavy approach is not used for global 
retrievals, but can be applied for case studies. Here the high resolution retrieval is used to assess the 
smoothing method used in ADV/ASV (Figure 6.2). 

 

Figure 6.2 Comparison of the cloud post-processed high resolution ('fine') and low resolution ('coarse')  ADV/ASV 
retrievals, averaged over each low resolution pixel (a), and comparison against AERONET for high (b) and low (c) 
resolution results. The low resolution retrieval has slightly more variance and slightly lower correlation with 
AERONET, but the overall agreement between the two retrieval modes is acceptable. 

ADV/ASV uncertainty estimate 

In ADV/ASV a static instrument uncertainty of 5% is assumed, and propagated through the retrieval 
to get an AOD uncertainty estimate for each retrieved pixel (Kolmonen et al. 2016). The uncertainties 
are typically of the order 0.01 – 0.1 (0.064 on the average) for the dataset used in this exercise. This 
estimate does not include sampling and smoothing uncertainties, uncertainties related to the 
selection of the best-fit aerosol model, or uncertainties related to the cloud screening.  

6.2 AERONET description 

AERONET (Aerosol Robotic Network) is a federated network of sun photometer instruments deployed 
at several hundred locations over the world for aerosol monitoring (Holben et al., 1998). The AERONET 
sun photometers measure solar irradiance at multiple wavelengths from UV to NIR to provide AOD 
with an uncertainty of 0.01-0.02 (Eck et al., 1999). 

In this exercise we use the cloud-screened, quality-assured Level 2.0 AERONET AOD data for the 
wavelengths 440, 675, 870, and 1020 nm. Since the wavelengths do not match with those of AATSR, 
Ångström exponent is used to derive AERONET AOD values at 555 and 659 nm wavelengths. 
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AERONET DRAGON Campaign 

In the summer 2011 AERONET deployed more than 40 CIMEL Sun-sky radiometers in the Baltimore-
Washington DC region for the DRAGON (Distributed Regional Aerosol Gridded Observational Network) 
campaign (AERONET 2011). The campaign provides AOD results for a network of sites distributed on 
a roughly 10 km grid (see e.g. Schafer et al. 2014). The observations from this campaign are used here 
to study the natural AOD variability, and the related smoothing and sampling uncertainties in AATSR 

AOD retrievals. 

6.3 Comparison methods 
 

We use the AERONET quality-assured Level 2.0 AOD for validation of the satellite based AOD results, 
which is a common practice (see e.g. de Leeuw et al. 2015). For each AATSR orbit, spatially matching 
AERONET stations are searched for. For a matching site, the AATSR data for a fixed distance around 
the site is averaged (Figure 6.3). Correspondingly, a temporal average of the AERONET values in a fixed 
time frame around the AATSR overpass time is taken. 

 

Figure 6.3 Illustration of the AOD comparison between AERONET and AATSR. a) The color shows the AATSR AOD 
values around an AERONET site. The dashed circle shows the sampling area. b) The blue curve shows the 
AERONET observations as function of time while the red dots show the AATSR observation at the overpass. The 
dashed lines show the obtained average values. 

A measure of the agreement between the ADV/ASV AOD results and AERONET is obtained by 
calculating the correlation coefficient R between a number of matching AATSR and AERONET 
observations. A scatter plot of collocated AATSR and AERONET AOD results at 555 nm and 659 nm, is 
shown in Figure 6.4. Naturally, the validation results depend on the sampling parameters: the distance 
around the site for averaging AATSR data (Figure 6.5), and the time window used for averaging the 
AERONET data. 



 
   

 
GAIA-CLIM technical report 
D3.4 – Measurement mismatch studies and their impact on data comparisons 
 

 

71 

 

 

Figure 6.4 Scatter plots of AATSR and AERONET AOD at 555 nm (blue) and 659 nm (red). For this example global 
data from September 2008 are used. a) All matches included; b) pixels with AATSR> 0.1 removed; c) pixels with 

AATSR> 0.06 removed. The correlation coefficient is improved from 0.88 to 0.95 by applying the threshold (for 
555 nm). 

The AERONET data has a typical temporal sampling rate of ~15 minutes, and we use a one hour 
sampling window for the comparison as a default. The size of the temporal matching window does 
not have a large effect on the comparison results (not shown). The standard deviation of AOD values 
within the temporal sampling window for each match was calculated. The observed temporal variation 
of AOD data is of the order 0.01-0.02, and we perceive that the co-location mismatch is dominated by 
the spatial effects. 

A simple measure of the representativeness of the point-like AERONET measurement for the larger 

area covered by the AATSR data is obtained from the standard deviation of the AATSR AOD (AATSR) 
around the AERONET site. For highly varying AOD the point-like AERONET measurement is likely to be 

less representative. It is seen in Figure 6.4 that by applying a threshold to AATSR, the correlation 

between AATSR and AERONET can be significantly improved. In this sense AATSR serves as a 
quantitative measure of the co-location mismatch uncertainty. 

 

Figure 6.5 Effect of the sampling distance to the correlation between AATSR and AERONET. a) The correlation 
coefficient between AATSR and AERONET AOD (at 659 nm) for all data (red curve) and for cases limited to AATSR 

< 0.3 (magenta curve). b) Average AOD as function of the sampling distance for AATSR (green curve) and for 
AERONET (blue curve), using the nearby AERONET sites with the same sampling radius (see Section 6.3). c) The 
corresponding (spatial) standard deviation of AOD. 

However, it must be noted that the variation of the AATSR AOD values around a site is not only due to 
the natural variability of aerosol load, but is very likely dominated by ADV/ASV retrieval errors. Hence 
it is not a direct measure of the co-location mismatch uncertainty. The dominant error sources in the 
satellite aerosol retrieval are residual clouds (overestimated AOD due to clouds surviving the cloud 
screening), and varying surface reflectance in connection with the satellite dual view co-location 
uncertainties. The spatial variability of AOD is further studied in the following subsection. 
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Another simple measure of sampling uncertainty is the number of retrieved pixels in the fixed area 
around an AERONET site (NAATSR). Pixels may be missing (retrieval not performed) due to cloud 
screening. Presence of (detected) clouds in the comparison area may suggest an elevated probability 
of residual clouds, and thus low NAATSR indicates higher sampling uncertainty. Setting a higher 
threshold for NAATSR improves the correlation slightly (not shown). 

Spatial variability of AOD 

We use the AERONET DRAGON campaign data to assess the spatial variability of AOD on scales similar 
to the AATSR AOD product grid (~10 km). Similar to the AATSR sampling, we average the AOD of the 
nearby AERONET sites (within the sampling distance), and calculate the corresponding standard 

deviation of AOD (AERO_NEAR). We can then compare this to the corresponding AATSR for each match 
between AATSR and AERONET during the DRAGON campaign. Initial comparison shows very weak 

correlation between AERO_NEAR and AATSR as seen in Figure 6.6 b). 

Analyzing the AATSR results in more detail, using a special high resolution retrieval mode, reveals 
unrealistically high AOD values on the coastlines of the Chesapeake bay (see Figure 6.6 a). Such 
problems are typical for satellite based aerosol retrieval, and often the coastal areas are removed 
from AOD products (e.g. for MODIS). In the case of ADV/ASV, this results from the smoothing 
difference between the two views and the highly varying surface reflectance values between land and 
water surface. Another issue arises from overestimation of AOD in coastal waters: the ASV algorithm 
employs an ocean surface reflectance model which is valid over open ocean, but is less suitable for 
coastal waters with high sediment loads. To remove the coastal areas from the comparison, we apply 
an upper threshold (0.6) for the standard deviation of AATSR TOA reflectance within the retrieval area. 

This improves the correlation between AERO_NEAR and AATSR considerably. The AOD correlation is also 
improved, while the number of matches between AATSR and AERONET is reduced (not shown). 

 

Figure 6.6. a) Illustration of the AOD spatial variability: the background color shows AATSR high resolution AOD 
values (without cloud post-processing) while the colored circles show the AERONET AOD at the nearby sites. b) 
Scatter plot of the standard deviation of (low res.) AOD within the sampling area for AATSR and for AERONET. c) 
Same as b), but with areas of high surface reflectance variability (coastal areas) removed 
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6.4 Conclusions on AATSR/AERONET comparison 
 

Work has been done on identifying the main sources of co-location mismatch uncertainties in 
comparisons of AATSR and AERONET AOD retrievals. Quantitative indicators of these uncertainties 
have been developed and tested. In addition, the effect of comparison sampling parameters has been 
assessed. 

The average standard deviation of AOD with a sampling distance of 0.25º is 0.042 for AATSR (0.035 
when coastal points are excluded) and 0.016 for AERONET. For AERONET, this is of the order of the 
reported uncertainty of ~0.010 to 0.021 (Eck et al., 1999), and similar to the temporal variation scale 
within the sampling time window of 0.5 – 1.0 hours. The reported AATSR AOD uncertainty, based on 
the propagation of instrument uncertainty of 5%, is of the order 0.01 – 0.1 (average 0.064 for this data 
set). We note that this analysis may be specific to the 2011 DRAGON campaign region and more 
studies are needed before definite conclusions. 

Overall, we conclude that more than one half of the observed AATSR spatial variability in the 
comparison sampling area is due to satellite retrieval uncertainties, rather than due to actual 
variability of the aerosol load. However, the standard deviation of AATSR AOD within the sampling 
area gives an approximate estimate of the co-location mismatch uncertainty between AATSR and 
AERONET aerosol retrievals. 

Inputs to Virtual Observatory 

As an input to the Virtual Observatory we provide description of methods that can be used 
to assess the co-location mismatch uncertainty in comparison of AOD retrievals made by 
satellite instruments and AERONET sun photometers. The methods are based on the 
knowledge of satellite product validation against AERONET in general, and on the case 
studies presented in this chapter. The description includes identification of parameters 
characterizing the uncertainties and recommendations for the default sampling parameters 
used in the comparison. 

7 Aerosol profiles: comparison of CALIOP/CALIPSO and 
EARLINET 
 

The high variability both in space and time of tropospheric aerosols is one of the main causes of the 

high uncertainty about radiative forcing related to tropospheric aerosols and their interactions with 

clouds (Forster et al., 2007). In particular, information about the vertical layering of aerosol and 

aerosol vertical distribution is a crucial point for aerosol-clouds interaction study. Moreover, the lack 

of information about the vertical mixing can lead also to significant horizontal inhomogeneities due to 

large vertical concentration gradients and it is therefore a large source of variability typically not 

considered in the models. Since 2006, CALIOP, the LIDAR onboard CALIPSO specifically designed for 

aerosol and clouds study, is providing high-resolution vertical profiles  of aerosols and clouds on a 

global scale. However, because of the small footprint and the revisit time of 16 days, how well these 

CALIOP measurements represent the atmospheric conditions of a surrounding area over a longer time 

is an important issue to be investigated. An integrated study of CALIPSO and EARLINET correlative 
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measurements opens new possibilities for spatial (both horizontal and vertical) and temporal 

representativeness investigation of this set of satellite measurements. 

7.1 CALIOP/CALIPSO description 
 

The NASA/CNES Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission 

is designed to study aerosols and clouds (Winker et al., 2010). Its aim is to provide profiling information 

at a global scale for improving our knowledge and understanding of their climatic role. The main 

instrument, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), is a dual wavelength (532 nm 

and 1064 nm) elastic backscatter LIDAR with the capability of polarization sensitive observations at 

532 nm (Winker et al., 2006; Winker et al., 2007). The CALIPSO satellite was launched into a near sun-

synchronous (SSO) and low earth orbit (LEO) at a 705-km altitude. Utilizing active remote sensing 

techniques, CALIOP observes aerosols during daytime and nighttime conditions, and therefore 

provides constant observations of aerosols and clouds.  

In particular, CALIPSO mission offers unprecedented observations of day and night aerosol global 

optical properties profiles, vital for aerosol-radiation-cloud interaction studies to understand their 

climatic role (Winker et al., 2013). 

Instrument data is transmitted from the satellite to the ground station once per day and transferred 

to the Level 0 processing facility to packetize, time order, and archive. The instrument data is 

combined with ancillary data sets such as meteorological, ephemeris, instrument status, and global 

reference products to enhance the quality and accuracy of the data products. The LIDAR Level 1 data 

(https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf) product contains a half orbit 

(day or night) of calibrated and geolocated LIDAR profiles. Apart from LIDAR data, satellite position 

data and viewing geometry are provided in the product. There are three types of Lidar Level 2 

products: layer products (cloud and aerosol), profile products (backscatter and extinction) and a 

vertical feature mask (cloud and aerosol locations and the corresponding type). Details of the CALIOP 

instrument and algorithms can be found in the companion papers of the JTECH special issue 

(http://journals.ametsoc.org/topic/calipso). Additional details can be found in the CALIPSO algorithm 

theoretical basis documents (ATBDs; available online at http://www-

calipso.larc.nasa.gov/resources/project_documentation.php). The aerosol related data are generated 

at a uniform horizontal resolution of 5 km. Finally, the Level 3 product reports monthly mean profiles 

of aerosol optical properties on a uniform spatial grid (Winker et al., 2013). All level 3 parameters are 

derived from the CALIPSO level 2 5-km Aerosol Profile products applying some additional quality 

screening filters (Winker et al. 2013). 

The retrieval of optical profiles from CALIPSO observations is highly complex and its detailed 

description is out of the scope of this document. However, the whole procedure could be briefly 

summarized in the following manner. Aerosol extinction and backscatter coefficients are retrieved in 

three steps: (1) layers are searched in the LIDAR acquired profiles, with horizontal averaging varying 

from 1/3 km to 80 km; (2) these layers are flagged as clouds or aerosols; and (3) the aerosol extinction 

and backscatter profiles are retrieved. The succession of the above mentioned steps are described in 

http://www-calipso.larc.nasa.gov/resources/project_documentation.php
http://www-calipso.larc.nasa.gov/resources/project_documentation.php
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detail in a special issue of the Journal of Atmospheric and Oceanic Technology (e.g. Winker et al., 

2009). 

Note that the above retrieval from CALIOP elastic backscatter LIDAR is underdetermined and an 

additional assumption is needed. In case of an elevated aerosol layer that lies in clear-air, the 

transmittance through the layer can be estimated from the clear-air signals (Young, 1995). This offers 

the needed constraint for the extinction retrieval, however the CALIOP SNR levels do no permit usually 

the application of the technique. Therefore, an algorithm (Omar et al., 2009) is used to estimate the 

extinction-to-backscatter ratio from the 532 nm depolarization and backscatter signals, which 

provides the above mentioned assumption (Young and Vaughan, 2009). 

The signal calibration, that precedes the above chain of aerosol retrieval, along with the correct 

aerosol layer detection and the aerosol layer subtyping dictate the correct retrieval, and any errors in 

these parameters will lead to errors in the optical properties retrieved by CALIPSO.  An extended error 

analysis of the aerosol extinction and backscatter retrieval can be found in Young and Vaughan (2013). 

As only CALIPSO level 2 aerosol profiles are used, these data are described in the following 

subsections. 

Sampling  

The CALIOP sampling is dictated by the laser repetition rate, the detection configuration and the 

satellite-target geometry. 

Vertical sampling 
The fundamental sampling resolution of the LIDAR is 30 m vertically (https://www-

calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf; p. 12).  

Horizontal sampling 
The fundamental sampling resolution of the LIDAR is 333 m horizontally (https://www-

calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf; p. 12). 

Temporal sampling 
The firing rate of the laser is 20 Hz and according to the minimal resolution of 1/3 km (average of 15 

single-shot profiles), leads to a temporal sampling of 0.75 s (https://www-

calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf; Table 2.01, p. 9). 

Smoothing 

The SNR level of the CALIPSO raw signals at sampling could be very low because of many factors:  
CALIPSO’s distance from the target, the high speed at which the LIDAR sweeps across the target space, 
constraints placed on the pulse energy of the laser transmitter by eye-safety requirements, the 
relatively low firing rate of the laser (20 Hz) relative to the velocity of the satellite, and vertical and 
horizontal variations in the composition of the layers being measured. Appropriate procedures are 
used for the CALIPSO satellite borne aerosol measurements for improving the SNR affecting the 
smoothing in the vertical, horizontal and temporal dimensions.  

https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf
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Vertical smoothing 
There exists a multi-step averaging scheme that dominates the vertical and horizontal resolution. The 

spatial invariant resolution shown in Table 7.1 below is the resolution applied to raw data already in 

the on-board averaging scheme.  

An altitude dependent averaging scheme is used by CALIPSO and provides higher resolution in the 

lower troposphere – where the spatial variability of cloud and aerosol is larger – and lower resolution 

above. The degree of averaging varies with the altitude, as detailed in the mentioned Table  7.1 (see 

https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf). This scheme 

is performed before the data are downlinked to ground data processing stations and can be regarded 

as pre-processing. 

 

Table 7.1. Spatial resolution for the CALIPSO on board averaging scheme (altitudes are with respect to mean 
sea level). 

For the current study, only Level 2 aerosol profile data in the range -0.5-20.2 km are used. For these 

data the vertical resolution is made homogenous at 60 m by averaging consecutive points in the lower 

range, -0.5-8.2 km. As a result, we have 145 and 200 samples per profile in the 0.5-8.2 km and 8.2-

20.2 km ranges, respectively. No further vertical averaging has been applied within this study to the 

original level 2 as released by the CALIPSO team following the ATBD reported on the CALIPSO website.  

Horizontal smoothing 

The CALIPSO algorithms perform a horizontal averaging to enhance the detection of aerosol layers. 

The averaging is performed for 1/3 km, 1 km, 5 km, 20 km, 80 km (https://www-

calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf).  

For the current study, CALIPSO level 2 data are used which are spatially uniform and reported in 5 km 

segments. Details on how this is achieved are reported at: https://www-

calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf.  

For the purpose of the current study, further horizontal averaging was applied on the Level 2 CALIPSO 

data (see Section9.3). Different horizontal averaging schemes for the CALIPSO data are used (Table 3) 

in order to investigate the influence of horizontal smoothing of CALIPSO data when compared against 

EARLINET data. CALIPSO data at different horizontal resolutions are obtained averaging the original 5 

km ones, without applying any screening criteria on them.  

Temporal smoothing 

The varying horizontal averaging, as described in Table 7.2, changes the temporal resolution as well 

and therefore this could decrease the very high original uncertainties. Table 7.2 also reports the 

number of laser shots corresponding to the different horizontal smoothing windows.  

Altitude 

Range (km) 

Vertical 

resolution 

Horizontal 

Resolution 

Profiles 

per 5 

km 

Samples 

per 

profile 

20.2 to 30.1 180 m  1.7 km 3 55 

8.2 to 20.2 60 m 1.0 km 5 200 

-0.5 to 8.2 30 m 1/3 km 15 290 

https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf
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Level 2 product post-processing 

 

Horizontal averaging 

[km] 

Temporal resolution 

[s] 
Laser shots 

25 3.75 75 

45 6.75 135 

75 11.25 225 

105 15.75 315 

125 18.75 375 

155 23.25 465 

175 26.25 525 

205 30.75 615 

Table 7.2. The horizontal averaging applied to CALIPSO data along with the corresponding temporal sampling 
and number of laser shots. 

7.2 EARLINET description 
 

EARLINET (European Aerosol Research Lidar NETwork) is the first LIDAR network for aerosol studies 

on continental scale. EARLINET comprises of different instrumental setups, specifics and team 

expertises. Building up on substantial measurement heritage, EARLINET worked on three main 

aspects: i) harmonization of the QA procedures (instrumental and algorithm), ii) establishing 

measurements schedule and iii) creating centralized dataset and homogeneous data format 

(Pappalardo et al., 2014 and references therein). The success of EARLINET, established in 2000 and 

currently part of ACTRIS, the European Research Infrastructure for Aerosol Clouds and Trace gases 

observations, paved the way for a further step in the global LIDAR aerosol monitoring even if starting 

up from heterogeneous LIDAR networks within the Global Aerosol Lidar Network (GALION) 

established by WMO.  

 

Sampling  
EARLINET is a network of different instruments with a wide variety of instrumental specifics, so that 

there is not a common vertical and temporal sampling overall within the network.  On the other hand, 

differences in the instrument components result in different signal-to-noise ratio throughout the 

network, therefore different smoothings are needed station by station. Spatio-temporal resolution as 

well as sampling are established at station level and varies in a significant way among the network. 

This aspect could mean a loss of homogeneity in the considered dataset, but on the other hand it 

provides the opportunity for investigating how the different set-ups affect the EARLINET-CALIPSO 

comparison.  

As illustrated in Table 7.3, EARLINET LIDAR signals considered here are acquired with vertical 

sampling between 3.75 and 60 m. Moreover, temporal sampling is characterized by the fact that, 

each LIDAR signal is acquired over a temporal window between 10 and 60s. Of course, horizontal 

sampling, can be considered as pointwise measurements. 
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Station Lidar Name Vertical sampling (m) 
Temporal 

sampling (s) 

Evora Paoli 30 60 

Granada Raymetrics D400 
7.5 

 

10 

Leipzig Martha 
60 
 

30 

Napoli - 15 60 

Potenza MUSA 3.75 60 

Table 7.3.  Vertical and horizontal sampling of the EARLINET LIDAR systems considered in this study. 

 

Smoothing 

Vertical smoothing 

After the LIDAR signal acquisition, the signals are integrated, thus modifying both the vertical and 

temporal resolution. Vertical resolution is decided at station level with the goal to improve the signal-

to-noise (SNR) levels. It can be variable with the altitude range: typically a finer vertical resolution is 

set in the lowest altitude range where the aerosol load is high and a coarser one at the upper levels 

where the aerosol load is low for improving the SNR.  

The aerosol extinction retrieval is numerically more complex with respect to aerosol backscatter 

because it involves the derivative of the signal. This complexity results in a coarser resolution. Even if 

the vertical extinction profiles are provided to the original raw resolution (typically 15m) the effective 

resolution is coarser: each point is provided because the ensemble of these “not-independent” points 

provides a better reconstruction of the real atmospheric feature (exactly as happens for image 

processing). The effective resolution is evaluated adopting interferometric criteria for peak 

discrimination (Iarlori et al., AMT 2015).  

For the EARLINET stations, typically the resolution for the aerosol backscatter is 60 m, while the 

resolution typically ranges between 200-600 m for aerosol extinction, reaching values of 1.2-1.5 km 

at the highest altitude ranges when no aerosol layers are identified.   

Temporal smoothing 

After the LIDAR signal acquisition, the signals are integrated, thus modifying both the vertical and 
temporal resolution. With regards to the temporal resolution, the signals are averaged for increasing 
the SNR in such a way to cover the widest altitude range possible. Typically signals are averaged for 
about 30 min – 1 hour in homogeneous aerosol load conditions. However, this resolution depends 
also on the aerosol content: low aerosol content means low signal and therefore a longer temporal 
integration time is needed for obtaining high SNR. Table 7.4 reports different characteristic of LIDAR 
instruments for the different stations in the case study analyzed. 
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Station Lidar Name 
Laser Repetition Rate 

(Hz) 

Laser shots 

Time window:  

30 min – 60 min 

Evora Paoli 20 36000-72000 

Granada Raymetrics D400 10 18000-36000 

Leipzig Martha 30 ~54000-108000 

Napoli - 20 36000-72000 

Potenza MUSA 20 36000-72000 

Table 7.4. Repetition rate of the EARLINET LIDAR systems considered in this study and laser shots within a time 
period of 30min-1h 

7.3 Comparison setup 
 

Since June 2006, many EARLINET stations are providing measurements in correspondence to  CALIPSO 

overpasses within 100 km (Pappalardo et al., 2010), according to CALIPSO validation plans. 

Additionally, simultaneous measurements are planned in order to study the aerosol temporal 

variability, or in the case of special events to study specific aerosol types and to investigate the 

geographical representativeness of the observations (Pappalardo et al., 2010). The measurement 

schedule is centrally distributed among the stations and measurements are performed under weather 

favorable conditions and conditioned by the station’s manpower availability. Up to July 2016, the 

EARLINET database reports more than 9000 files related to CALIPSO overpasses (EARLINET publishing 

group 2014; https://data.earlinet.org). In the following, we consider only files related to overpasses 

within a 100 km radius from the station and excluding special events (Case B and Case C described in 

Pappalardo et al., 2010). In particular, 143 aerosol backscatter coefficient profiles are compared 

against their CALIPSO counterparts. This parameter has been selected for investigating the difference 

balance between the two observations because it was demonstrated that, among the CALIPSO optical 

properties, the aerosol backscatter is less affected by the inversion assumptions (Papagiannopoulos 

et al., 2016). Further only nighttime measurements are considered because of the larger calibration 

uncertainty for daytime CALIPSO measurements and because of the EARLINET capability of 

independently measuring the aerosol backscatter and extinction coefficients. 

Regarding CALIPSO extinction coefficient, Section 7.1 highlighted that the retrieval is computed using 

an assumption on LIDAR ratio. Although It has been shown (e.g., Schuster et al., 2012; 

Papagiannopoulos et al., 2015; Amiridis et al., 2013) that this assumption may have an impact on 

EARLINET-CALIPSO comparison, this point is not considered in this deliverable, but it could be 

addressed by further research. 

The comparison of EARLINET profiles and their CALIPSO counterpart is a straightforward procedure. 

Both EARLINET and CALIPSO make use of active remote sensing instruments, yet, the nature and the 

needs of the satellite mission require special care for any validation study. EARLINET is performing 

correlative measurements since CALIPSO started its life cycle (April 2006), based on a schedule 

established before the satellite mission. The strategy followed by the member stations is as follows: 

the observations occur during the satellite overflight within 100 km distance of the satellite ground-

track from the station, and are performed for at least 60 min. 
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Only CALIPSO measurements synchronous to the EARLINET measurements are used here. The 

CALIPSO data are searched for the closest in distance point. This point corresponds to a 5-km CALIPSO 

profile, however, more 5-km CALIPSO profiles are also averaged in order to assess the spatio-temporal 

satellite’s performance. Apart from the original 5-km profile further eight horizontal resolutions are 

used: 25-km, 45-km, 75-km, 105-km, 125-km, 155-km, 175-km and 205-km. 

For example, in Figure 7.1,  the “pin” symbol represents EARLINET Potenza site, while the white thick 

line, which is 46.7 km long, points to the center of the 5-km ground track for the CALIPSO overflight 

on 24/08/2010. Finally, the nine blue dots indicate the profiles used then for the calculation of the 45-

km average CALIPSO profile. 

 

Figure 7.1. CALIPSO overpass on 24/08/2010 with a minimum distance of 46.7 km from EARLINET Potenza 
station. 

To investigate dependence on the specific site, only the stations with a large enough number of co-

located observations are considered and analyzed. Namely the stations are: Évora, Granada, Napoli, 

Potenza, Leipzig giving 19, 21, 40, 37, and 26 co-located observations, respectively. Prior to the 

aforementioned analysis, the following identified cirrus cases have been screened out from EARLINET 

data (CALIPSO aerosol data are already screened in this sense). The cloud screening of EARLINET data 

is not an automatic procedure for the current version of the database. This was done for this work 

taking advantage of the available labeling of the data. The cirrus category and the reported 

information about the cirrus cloud altitude range found in the comment field of the data file were 

used. However, in some cases manual inspection of the data was needed for identifying the cirrus 

cloud in the profiles, since the inclusion of this information within the EARLINET file is not mandatory 

at this stage. As a result the data reported in Table 7.5 have been removed from the analysis. In 

addition, the 27 uncertainties above 6923 m that resulted to be greater than 1 m-1sr-1 at Granada have 

been also removed from subsequent uncertainty analyses.  
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Station Date Altitude range 

Naples – IT 19 set 2008  
17 mag 2009  
24 nov 2009  
18 apr 2010  
   

above 6.5km  
above 6 km  
above 8km  
above 5.4km 

Potenza – IT 03 apr 2007  
21 apr 2008 
14 nov 2008  
27 apr 2010   

 at 8-9.5km 
above 7.5 km  
above 7 km  
above 8 km 

Table 7.5. Cirrus clouds detected and discarded in EARLINET stations involved in this study. 

In order to homogenize the EARLINET aerosol profiles in terms of altitude levels (i.e. same altitude 

points for all the profiles provided by the same stations), an interpolation on two points has been 

applied to Évora profiles. In fact this station changed instrument configuration during the considered 

period so that an adaptation is needed to homogenize the data from the two periods. Finally, aerosol 

backscatter data from the station of Naples have been reconstructed to match the altitude points of 

the corresponding extinction profiles in order to allow in a second step to investigate the differences 

of the LIDAR ratio obtained from EARLINET and CALIPSO (i.e. EARLINET LIDAR ratio). The Naples 

aerosol backscatter profiles vertical resolution has been modified for the backscatter to fit the coarser 

extinction resolution. At each extinction altitude, it has been associated to the value of backscatter 

which is the closest in altitude (the difference is always within the vertical effective resolution). 

The table below reports the data available from the original CALIPSO hdf and EARLINET netCDF files 

freely available at respective databases: 

https://eosweb.larc.nasa.gov/HBDOCS/langley_web_tool.html, and https://www.earlinet.org. 

Only the information considered relevant for the purposes of the work are extracted and reported in 

comma-separated-values (csv) file format. 

EARLINET CALIPSO 

Altitude a.s.l. Altitude a.s.l. 
Aerosol Backscatter [m-1sr-1] Aerosol Backscatter [m-1sr-1] 
Aerosol Extinction [m-1] Aerosol Extinction [m-1] 
Station Latitude and Longitude [°] Latitude and Longitude central point [°] 
Start and Stop time 
of temporal smoothing [UT] 

Time of central point [UT] 

Aerosol Backscatter Uncertainty [m-1sr-1] Aerosol Backscatter Uncertainty [m-1sr-1] 
Aerosol Extinction Uncertainty [m-1] Aerosol Extinction Uncertainty [m-1] 

Table 7.6. Relevant parameters for this study as delivered from EARLINET and its CALIPSO counterpart. 

 

7.4 Analysis and results 
 

As reported above, the performed analysis is done on the backscatter variable, because it is the 

CALIPSO product less affected by retrieval assumptions. From equation (2) in Section 1.1 the 

uncertainty term 𝜎2  depends on the horizontal and temporal mismatch error between 𝑥𝑠𝑎𝑡 and 𝑥𝑔𝑛𝑑, 

https://eosweb.larc.nasa.gov/HBDOCS/langley_web_tool.html
http://www.earlinet.org/
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the satellite and ground backscatter respectively.  In order to investigate how the horizontal 

smoothing impact on the term 𝜎2  of the uncertainty budget, we consider the root mean squared error 

(RMSE), which is defined as  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑥𝑠𝑎𝑡 − 𝑥𝑔𝑛𝑑)2

𝑙

. 

In the above formula 𝑙 is a multi-index 𝑙 = (ℎ, 𝑠, 𝑑), where h indicates the altitude, d the day and s the 

measuring ground station; moreover N is the number of available co-located measurements. 

 

Figure 7.2. Co-location uncertainty (log.RMSE) for CALIOP and EARLINET backscatter mismatch by station and 
smoothing parameter. Vertical bars represent the 95% error intervals. 

In this case study, we have 200 altitude levels, corresponding to CALIOP observations. The vertical 

range is 97.67 -12013 m, with a step of 60 m. The counter s=1,…,5, identifies the five EARLINET stations 

(Évora, Granada, Leipzig, Napoli and Potenza) and d=1,…,𝑔𝑠, identifies the profile while 𝑔𝑠 gives the 

number of profiles for station s. In total, the analysis considers 143 EARLINET profiles.  

To understand how the co-location error depends on the horizontal smoothing, we have computed 

the RMSE of the eight different horizontal averaging schemes for CALIOP described in Table 7.2, which 

includes also the original CALIPSO 5-km data.  

In Figure 7.2 and Table 7.7, the co-location uncertainty averaged by station and CALIOP horizontal 

smoothing is presented in order to understand how smoothing affects the comparison. The yellow 

highlighted values correspond to station minima. The minimal co-location uncertainty is obtained at 

45 km for Évora, Leipzig and Napoli, which have small uncertainties already at 5km. This suggests that 
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using 45 km as standard horizontal averaging is advisable for the comparison of pointwise ground 

based measurements with the CALIOP level 2 product. At Potenza and Granada instead the minimal 

co-location uncertainty is obtained for 105 and 155 km respectively. This different behavior of 

Granada and Potenza can be ascribed to the variant orography that affects the atmosphere sampled 

by the satellite LIDAR: compared to the other sites in fact, Granada and Potenza are the unique ones 

located at upper altitudes and surrounded by different areas (Alados-Arboledas 2013, Mona et al., 

2009). From Figure 7.3, we see also that for all the stations the co-location uncertainty increases in 

the tails of smoothing range that is 175-205 km and 5-25 km. Figures 7.2 and 7.3 indicate that the 

uncertainty in Granada is larger than in all the other stations, with the exception of Potenza at 105 km 

smoothing, where however the uncertainties are comparable. This underlines the peculiarity of 

Granada comparison: in this case the co-location uncertainty is higher than all the other stations, 

independently from the horizontal smoothing. Granada station is located in a natural basin 

surrounded by mountains with the highest mountain range located to the southeast, with altitudes 

above 3000 m (Guerrero-Rascado et al., 2008). The presence of this mountains can act as a boundary 

for both local and free troposphere aerosol layers depending on the specific aerosol source, so that if 

the CALIOP track location is not favorable, very large differences are expected when compared to the 

ground-based measurements. Finally both Figure 7.2 and 7.3 report the mean co-location uncertainty, 

which has the same behavior of Granada values, because it is driven by these very large values and 

therefore cannot be regarded as representative of the ensemble of the considered locations.  

 

 

Figure 7.3.  Co-location uncertainty (log.RMSE) for CALIOP and EARLINET backscatter mismatch by station and 
smoothing parameter. 
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 Horizontal smoothing (km) 

 5 25 45 75 105 125 155 175 205 

Evora 8.01E-07 7.25E-07 7.25E-07 2.29E-06 1.97E-06 1.83E-06 1.43E-06 1.60E-06 1.55E-06 

Granada 9.36E-06 7.28E-06 4.84E-06 4.29E-06 4.12E-06 3.88E-06 3.92E-06 1.13E-04 2.55E-04 

Leipzig 7.35E-07 7.31E-07 6.05E-07 6.28E-07 6.65E-07 7.51E-07 2.03E-06 2.82E-06 2.41E-06 

Napoli 6.42E-07 8.26E-07 6.17E-07 7.53E-07 1.14E-06 1.13E-06 1.13E-06 1.88E-06 2.94E-06 

Potenza 2.60E-06 2.29E-06 2.21E-06 1.56E-06 1.33E-06 1.39E-06 4.79E-06 4.79E-06 4.19E-06 

All 

stations 

4.38E-06 3.46E-06 2.43E-06 2.33E-06 2.21E-06 2.10E-06 3.03E-06 5.06E-05 1.14E-04 

Table 7.7. Co-location uncertainty (RMSE) by smoothing and Station [1/mr]. Yellow color highlights the station 
minima. 

In order to better understand these results on co-location uncertainty, the measurement uncertainty 
has been investigated. In Figure 7.4, the solid horizontal lines represent the averaged measurement 
uncertainty of EARLINET while the dashed lines represent the uncertainties of CALIOP smoothed 
backscatter. As expected, the uncertainty of ground measurements is smaller than the satellite for all 
stations. Moreover, in Table 7.8, the mean of the measurement uncertainties by station and 
smoothing are reported, while in Table 7.9, the relative measurement uncertainty (coefficient of 
variation) for the backscatter values is reported. 

Generally speaking, the satellite uncertainty is larger or equal to ground uncertainty. Granada has the 

largest measurement uncertainty, for both EARLINET and CALIOP. This appears also from Table 7.8 

where Granada has the largest values of relative uncertainty both for EARLINET and CALIOP when 

averaged over smoothing.  Comparing Figures 7.2 and 7.3 we can conclude that horizontal smoothing 

affects in a different way measurement uncertainty and co-location uncertainty. 
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Figure 7.4. Measurement uncertainty by station. Dashed lines: CALIOP uncertainty averaged by smoothing 
parameter. Solid lines: EARLINET uncertainties. 

 

 Earlinet Caliop 

  Horizontal smoothing (km) 

5 25 45 75 105 125 155 175 205 

Evora 1.45E-08 1.43E-06 1.33E-06 1.25E-06 3.60E-03 3.40E-03 3.32E-03 3.02E-03 2.40E-03 1.92E-03 

Granada 9.88E-06 8.90E-03 5.18E-03 8.30E-03 9.24E-03 7.78E-03 8.16E-03 7.41E-03 7.57E-03 7.44E-03 

Leipzig 5.23E-08 1.05E-06 1.96E-06 1.81E-06 1.77E-06 8.29E-06 8.34E-06 8.88E-06 9.12E-06 9.02E-06 

Napoli 2.09E-07 1.82E-03 1.00E-03 1.36E-03 1.88E-03 1.45E-03 1.15E-03 1.63E-03 1.55E-03 1.48E-03 

Potenza 1.99E-06 2.58E-06 5.14E-03 4.82E-03 4.34E-03 4.52E-03 3.86E-03 2.10E-03 1.86E-03 1.76E-03 

Table 7.8. Average measurement uncertainties for ground and smoothed satellite backscatter [1/msr]. 
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 Earlinet Caliop 

  Horizontal smoothing (km) 

5 25 45 75 105 125 155 175 205 

Evora 0.06 1.07 1.15 1.27 2106.5 2199.5 2247.1 2578.7 2273.1 2010.3 

Granada 8.14 1422.1 1270.2 3325.4 4591.1 4897.1 4654.4 4381.3 1174.6 592.62 

Leipzig 0.18 1.16 2.27 2.33 2.22 5.95 5.84 4.78 4.44 4.48 

Napoli 0.59 1794.7 1031.5 1331.6 1674.1 1410.4 1278.1 1863.4 1741.8 1479.4 

Potenza 5.06 1.87 2547.3 2499.9 2196.3 2237.2 2117.8 1468.9 1335.3 1327.9 

Table 7.9. Relative measurement uncertainty of ground and smoothed satellite backscatter. 

All values reported in the analysis until now are related to the whole column: uncertainties related to 

altitude regions with high aerosol content are mixed with altitude regions where the aerosol content 

is very low and uncertainties are expected to be high because of a low SNR. To take into account the 

differences in the vertical dimensions and to exploit the vertical profiling capability of both EARLINET 

and CALIPSO, we split the atmosphere into three zones: below 2.5 km (as representative of local 

aerosol conditions), between 2.5 and 5.5 km (middle troposphere with transport of aerosols) and 

above 5.5 km (free troposphere).  

Figure 7.5 (left panel) corresponds to the lowest part of the troposphere, that is, the planetary 

boundary layer, where normally, lower agreement is expected between the ground station and the 

satellite swath. All the values are grouped around -6.0 log10 (m-1sr-1), with the exception of Granada 

probably because of the already mentioned variant topography surrounding this EARLINET station 

(Alados-Arboledas et al., 2013; Papagiannopoulos et al., 2016). Regarding Potenza station, there is a 

decrease in the RMSE for smoothing up to 100 km whilst it is approximately constant and comparable 

with Évora, Leipzig and Napoli stations for larger smoothing. This effect could be attributed on one 

hand to the mountainous area where Potenza is situated and, on the other hand, to the variety of 

surfaces that the satellite encounters (e.g land, sea). In particular, Potenza is on a mountain close to 

the sea but also to big cities, so the difference with smaller horizontal smoothing can be larger (e.g. 

CALIPSO ground track lies over sea) than at higher smoothing where smoothing procedure merges 

different conditions (comparing EARLINET mountain sampling versus an average of sea, cities and 

mountain). This finding is in agreement with the smaller discrepancies observed in the PBL at Potenza 

between EARLINET and corresponding CALIPSO observations for the overpasses at about 80km 

distance respect to the closer overpasses at 40km distance because of topographic and local effects 

(Mona et al., 2009). 

The opposite behaviour is found for Leipzig because of the more homogeneous topography. For the 

remaining stations the RMSE is lower at original horizontal smoothing and gradually increases with 

increasing smoothing. Generally, the increasing smoothing tends to increase the RMSE as the satellite 

contains a vast geographic area and therefore the aerosol fields can be dramatically different. This 

effect has been documented and reported in several studies (Anderson et al., 2003; Pappalardo et al., 

2010). 
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The mid-troposhere plot (Figure 7.5; middle panel) corresponds to the height range typically free from 

local sources and indicates the transboundary motion of aerosol, and therefore this plot is the most 

relevant to assess the CALIPSO representativeness. At first sight the lines are contained in the range 

between -6.5 and -5.0 log10 (m-1sr-1) which shows a better agreement with respect to the previous 

figure implying that the effect of local sources is greatly reduced, especially at Granada. For the first 

50 km and for the stations of Napoli, Leipzig, and Évora the RMSE is the lowest and then either 

gradually or steeply increases for increasing smoothing. On the other hand, for the station of Potenza 

the situation is reversed in the range 0-50 km and behind that it shows a behavior which is similar to 

the other locations. For Granada, the situation is more complex as the RMSE peaks at 25 km and then 

decreases until 75 km, to follow for the next smoothing ranges the behavior of the other stations. 

The free troposphere behaviour of Figure 7.5 (right panel) corresponds to predominantly aerosol-free 

area without large variations of RMSE w.r.t. smoothing. As a case in point, Évora, Potenza and Leipzig 

produce a constant value for the whole smoothing range, showing that in free troposphere the 

smoothing parameter loses its importance in explaining the co-location error. We observe a finer 

structure at Granada and Napoli that can be attributed to aerosol structures not observed by either 

instruments or in case of CALIPSO cloud misclassification (e.g. subvisual, thin cirrus clouds). These 

opaque clouds in the higher altitude levels frequently penetrate the CALIOP aerosol retrievals and 

alter the CALIPSO provided atmospheric description  (Huang et al., 2011; 2012; 2013; Kittaka et al., 

2011).  

 

 

Figure 7.5. RMSE for CALIOP and EARLINET measure of aerosol backscatter at different smoothing parameter 
for different stations and for different zone of atmosphere. 

 

7.5 Conclusions and inputs to Virtual Observatory 
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A first effort has been undertaken towards identifying the main contributions of co-location mismatch 

uncertainties in comparisons of CALIOP and EARLINET aerosol backscatter profiles. The comparison is 

not trivial because of two main reasons: 1) the small footprint of CALIPSO measurements comparing 

to the distance from EARLINET sites and 2) the high uncertainty of CALIPSO products (Young and 

Vaughan, 2013). The comparison is then even more complex because of the fine vertical structure of 

the aerosol field and its variability.  

Co-location mismatch has been investigated as a function of the observational site and of the 

horizontal smoothing of the CALIOP data. Furthermore, the investigated altitude range [90m-12km 

asl] has been splitted in three regions corresponding to the PBL, the mid-troposphere and the free 

troposphere range. 

The co-location mismatch decreases as altitude increases: 10-6-510-5m-1sr-1 in the PBL, 510-7-510-6m-

1sr-1 in the middle troposphere and typically lower than 10-6m-1sr-1 in the free troposphere. An 

influence of the smoothing on co-location mismatch is found for the two lowest atmospheric ranges, 

while in the free troposphere its influence can be disregarded. This shows that above 5.5 km, LIDAR 

pointwise measurements can be typically considered representative even over horizontal scale as 

large as 200 km, because of the low variability of the aerosol field at these altitudes.  In the middle 

troposphere the LIDAR data are representative for distances up to 100 km in agreement with 

Pappalardo et al. (2010). Finally in the lowest troposphere where the orography and local source play 

a relevant role, the representativeness strongly depends on the site characteristics. Typically the co-

location mismatch has its minimum around 50 km, while for peculiar situations (mountain or region 

surrounded by mountains), this minimum is shifted around 100-150km.  

Inputs to Virtual Observatory 

The “Virtual Observatory” (VO) is being developed within WP5 to serve as a proof-of-concept facility 

in GAIA-CLIM. In the LIDAR framework described above, a tool will be offered to the end users through 

the VO, which implements an independent method able to co-locate LIDAR retrievals from EARLINET 

to the best horizontally smoothed CALIOP retrieval, for sites located in Évora, Granada, Napoli, 

Potenza and Leipzig. 

To do this, datasets may be provided either in the original formats, namely hdf for CALIPSO and netCDF 

for EARLINET, or in csv format. In particular these may include original data, namely measurements 

and their uncertainties, and the estimated co-location uncertainties plus the optimally horizontally 

smoothed CALIOP retrieval (presently in csv format).
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8 Conclusions and prospects 
 

The metrology of an atmospheric measurement contains several aspects that are crucial when 

assuring the quality of the data and assessing their fitness-for-purpose with respect to user 

requirements, in particular those requirements expressed by the Copernicus Climate Change and 

Atmosphere Monitoring services (C3S and CAMS). In this context, quality assurance of satellite data 

sets involves comparison with ground-based reference measurements in order to obtain an 

independent indicator of the quality of the data and their uncertainties. These comparisons are 

affected by additional errors and uncertainties due to spatiotemporal co-location mismatch: different 

instruments and measurement methods have different sampling and smoothing properties, in the 

horizontal, vertical, and temporal domain. As the atmosphere is variable and inhomogeneous on a 

variety of scales, these differences can impact significantly the comparison results, depending on the 

co-location criteria and harmonization methods that were used to minimize or limit spatiotemporal 

mismatch.  

D3.2 considered generic metrology aspects of an atmospheric data comparisons. Along those lines, 

Task 3.2 and Sections 3-7 above, developed a number of case studies of data comparisons covering 

temperature and humidity profiles, ozone profiles and aerosol, both columnar and profile. 

The methods used here range from the classical statistical approach to explicit physic simulation, going 

through advanced statistical methods. The first simpler approach is essentially based on means, 

standard deviations and correlations or similar statistics capable to describe central tendency, spread 

and association. The latter approach is based on advanced statistical methods and includes functional 

data approach; this has the advantage of handling each entire atmospheric profile as a single 

(functional) data object, which is represented by splines or other basis functions. Moreover functional 

regression and isotonic regression allow us to understand relationship involving errors and or 

uncertainties. Finally physics simulation is based on OSSSMOSE software and allows to simulate 

realistic spatio-temporal atmospheric field at individual measurement level. Although this approach is 

clearly very powerful, it must be noted that the OSSSMOSE simulations are inherently limited in their 

representation of small-scale variability by the resolution of the underlying model/reanalysis fields. As 

such, it may be that errors and uncertainties are somewhat underestimated, in particular in the 

lowermost atmospheric layers and when referencing against “singular” snap shots.  

This deliverable shows also that the work progress of Task 3.2 WP3 is in a very advanced stage and 

only little “refinements” are still to be completed. So that actions in Task 3.3 (WP3 results 

implementation in WP5) and inputs to VO may be developed. 

To exemplify these conclusions an excerpt of the main results is summarized below, showing that Task 

3.2 is made by a balanced blend of new methodological proposals and consolidated analysis 

techniques.  

Satellite-radiosonde comparison of temperature and humidity 

The comparison of temperature and humidity profiles from IASI mission and RAOB network has been 

considered in Central Europe (C-EU) using the NOAA’s NPROVS dataset, which is considered the major 
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co-location software available. The aim was to understand the contribution of both the vertical 

smoothing of IASI and the spatio-temporal mismatch to the co-location uncertainty.  

As a preliminary important step, the information content of RAOB data, based on Vaisala processing, 

has been assessed w.r.t. to vertical sampling using GRUAN data as high vertical resolution reference 

data based on GRUAN processing. This resulted in computing sparseness uncertainty and Vaisala-

GRUAN processing uncertainty, which are useful to understand the behavior of total co-location 

uncertainty. 

For example, considering temperature, Vaisala-GRUAN processing uncertainty resulted to be nearly 

constant, about 0.12 K up to 300 hPa and showed an increase, up to 0.39 K in the lower stratosphere, 

possibly due to solar radiation. After correction for Vaisala-GRUAN processing uncertainty, vertical 

sparseness uncertainty of RAOB profiles resulted to be smaller than 0.48 K below 300 hPa, but showed 

an increase to about 1 K in lower stratosphere.  

Harmonization of RAOB and IASI has been made using a novel approach, independent on the IASI 

average kernels which were not available in NPROVS dataset. It is based on a flexible GEV weight 

function which is adapted to the data, and has the capability to estimate the vertical smoothing even 

in absence of detailed information about averaging kernels used for the satellite retrieval. As a result, 

vertical smoothing uncertainty, in comparison to total and co-location uncertainties resulted to be 

roughly constant, about 0.5 K, and slowly decreasing up to 300 hPa; above, it showed an increase 

more marked than co-location uncertainty.  

The spatio-temporal mismatch uncertainty was computed using an isotonic regression approach 

applied to the co-location uncertainty adjusted for vertical smoothing and considered as a function of 

air distance and co-location delay. As a result, overall in C-EU, co-location uncertainty resulted to be 

smaller than 1.5 K, except near ground level where it reached 1.8 K. But large uncertainties (3.0-3.3K) 

have been observed when both air distance and delay are large. 

Note that, although the algorithm used here considered a time invariant vertical smoothing, in the 

version under development for the Virtual Observatory of WP5, a dynamic procedure which covers 

seasonal and daily atmospheric variability will be used. As a consequence, the results of this D3.4 are 

expected to give an upper limit for the adjusted co-location uncertainty which will be made more tight 

in Virtual Observatory. 

Radiosonde temporal mismatch of temperature and humidity 

The work on temporal mismatch uncertainties among radiosonde profiles provided a direct means of 

estimating the temporal mismatch uncertainty in temperature as a function of altitude, season and 

time of day, for the selected sites using ERA Interim model data. This approach has been validated by 

comparing the ERA Interim results with GRUAN-processed radiosonde data from those sites where 

long-term high frequency data is available. Analysis of the results have shown that the differences 

between the radiosonde and ERA-Interim temperature data can be explained by the expected 

uncertainties in the different data sources.  

Ozonesonde balloon drift 

Ozone co-location case studies have been addressed using physics simulation system OSSSMOSE.  
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In the first case, considering ozonsondes, latest generation MERRA-2 and the MACC IFS-MOZART 

reanalysis have been used. According to data of Paramaribo, Suriname and Hohenpeißenberg, 

Germany, the errors due to balloon drift resulted strongly dependent on launch location. When the 

drift distances are small and the ozone field relatively stable, e.g. at Paramaribo, the simulated errors 

remain below typical measurement uncertainties, which are estimated to be of the order of 3-5%.  

Indeed, when standard operating procedures are followed, the three most commonly used sonde 

types produce consistent results between the tropopause and 28 km, with biases smaller than 5% and 

precisions better than 3%. At higher and lower altitudes the data quality degrades somewhat, and the 

differences between the sonde types become more clear. Overall, ECC-type sondes perform best with 

a bias of 5–7% and a precision of 3–5% in the troposphere. Consequently, in this case, the errors due 

to balloon drift also remain below the accuracy targets for the use of ozonesondes as reference data 

in satellite validation work. On the other hand, when drift distances are >100km and the ozone field 

is inhomogeneous, the errors do become comparable to the measurement uncertainty and will 

contribute to the error budget of a comparison with other measurements when not minimized, e.g. 

by doing a height-dependent co-location, or taken into account by adding an additional uncertainty 

term in the consistency test (σ in Eq. 1.1).    

Ozone profiles: difference between zenith and actual line-of-sight 

Micro-wave radiometer (MWR) measurements of the vertical ozone profile are obtained using a line-

of-sight (LOS) with a low elevation angle. This leads to a significant displacement of the location of 

actual sensitivity w.r.t the instrument location. From an OSSSMOSE simulation, it was found that the 

resulting differences w.r.t. a zenith measurement at the instrument location are largest below 30km 

and above 65km.  Instead of associating a measurement with the instrument location, it is shown that 

it may be better to use an “effective” location, corresponding to the projection on the ground of the 

45km altitude level following the LOS.   

Ozone profiles from LIDAR: the effect of integration time 

This case study investigated to what extent the integration time used for LIDAR measurements of the 

vertical O3 profile in the stratosphere may affect the accuracy of the measurement and its 

representativeness. In general, the OSSSMOSE simulations indicated that the temporal smoothing 

errors are actually rather limited. This is due to the mostly linear variation in the ozone concentrations 

at the time scale of an integration. Only for the longest integration times and in variable atmospheric 

conditions do the smoothing errors become comparable to the measurement uncertainty (several 

percent). The representativeness uncertainty on the other hand is significantly  larger and can 

dominate the measurement uncertainty in the lower stratosphere. This is of particular importance 

when LIDAR measurements are co-located with other measurements that fall within the integration 

time, but could not agree within their measurement uncertainties.   

Total aerosol comparison 

Considering column aerosol optical depth (AOD) over the Chesapeake bay area, USA, the Pearson’s 
correlation coefficient has been used to assess co-location agreement of satellite (AATSR) and 
AERONET AOD retrievals. It has been shown that the correlation decreases when the spatial variability 
around the aeronet site increases. Overall, it was concluded that more than one half of the observed 
AATSR spatial variability in the comparison sampling area is due to satellite retrieval uncertainties, 
rather than due to actual variability of the aerosol load. However, the standard deviation of AATSR 
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AOD within the sampling area gives an approximate estimate of the co-location mismatch uncertainty 
between AATSR and AERONET aerosol retrievals. 

Aerosol profile comparison 

Considering LIDAR aerosol backscatter profiles from satellite (CALIOP/CALIPSO) and EARLINET, co-

location mismatch has been investigated as a function of the observational site and of CALIOP 

horizontal smoothing. To do this the horizontal smoothing level has been changed from 5 to 205 km 

along the satellite trajectory and the optimal horizontal smoothing has been computed for each site 

and atmospheric region. This approach showed that above 5.5 km, LIDAR pointwise measurements 

can be typically considered representative even over horizontal scale as large as 200 km, because of 

the low variability of the aerosol field at these altitudes.  In the middle troposphere the LIDAR data 

resulted to be representative for distances up to 100 km. Finally in the lowest troposphere where the 

orography and local source play a relevant role, the representativeness strongly depends on the site 

characteristics. Typically the co-location mismatch has its minimum around 50 km, while for peculiar 

situations (mountain or region surrounded by mountains), this minimum is shifted around 100-150km. 
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Annex A: QA4ECV recommended terms and definitions 
 

TERM DEFINITION SOURCE 

accuracy 

closeness of agreement between a measured quantity 

value and a true quantity value of a measurand; note 

that it is not a quantity and it is not given a numerical 

quantity value 

VIM/ISO:99, 

GUM 

area (volume) of 

representativeness 

the area (volume) in which the concentration does not 

differ from the concentration at the station by more 

than a specific range 

Larssen 

Bias 

(1) systematic error of indication of a measuring 

system 

(2) estimate of a systematic measurement error 

(3) estimate of a systematic forecast error 

(1) VIM/ISO:99 

(2) VIM/ISO:99 

(3) MACC 

calibration 

(1) the process of quantitatively defining the system 

responses to known, controlled signal inputs 

(2) operation that, under specified conditions, in a first 

step, establishes a relation between the quantity 

values with measurement uncertainties provided by 

measurement standards and corresponding indications 

with associated measurement uncertainties and, in a 

second step, uses this information to establish a 

relation for obtaining a  measurement result from an 

indication 

(1) 

CEOS/ISO:19159 

(2) VIM/ISO:99 

dead 

band               (or 

neutral zone) 

maximum interval through which a value of a quantity 

being measured can be changed in both directions 

without producing a detectable change in the 

corresponding indication 

VIM/ISO:99 

detection limit 

measured quantity value, obtained by a given 

measurement procedure, for which the probability of 

falsely claiming the absence of a component is β, given 

a probability α of falsely claiming its presence 

VIM/ISO:99 
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error 

(1) measured quantity value minus a reference 

quantity value 

(2) difference of quantity value obtained by 

measurement and true value of the measurand 

(3) difference of forecast value and a, estimate of the 

true value 

(1) VIM/ISO:99 

(2) 

CEOS/ISO:19159 

(3) MACC 

establish define, document and implement CDRH 

instantaneous 

field of view (IFOV) 
opening angle corresponding to one detector element  ISO:19130 

fiducial 
used as a fixed standard of reference for comparison 

or measurement (fiducial point) 
WordNet 

fiducial marker 

refers to an object placed in the field of view of an 

imaging system which appears in the image produced, 

for use as a point of reference or a measure 

 

field-of-regard 
an area of the object space scanned by the field-of-

view of a scanning sensor  
NIST 

field-of-view 
the solid angle from which the detector receives 

radiation  
NIST 

footprint 
the area of a target encircled by the field-of-view of a 

detector of radiation, or irradiated by an active system 
NIST 

geometrical 

resolution 

ability of a sensor system to record signals separately 

from neighboring object structures 

DIN 18716-3: 

1997-07 

ground sampling 

distance (GSD) 
linear distance between pixel centres on the ground  CEOS/ISO:19159 

influence quantity 

quantity that, in a direct measurement, does not affect 

the quantity that is actually measured, but affects the 

relation between the indication and the measurement 

result 

VIM/ISO:99 

in situ 

measurement 

(1) a direct measurement of the measurand in its 

original place 

(2) any sub-orbital measurement of the measurand 

(1) 

CEOS/ISO:19159 

(2) GEOSS 

measurand quantity intended to be measured VIM/ISO:99 

metadata 
data about the data; parameters that describe, 

characterise, and/or index the data 
WMO 
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monitoring 

(1) systematic evaluation over time of some quantity 

(2) by extension, evaluation over time of the 

performance of a system, of the occurrence of an 

event etc. 

(1) NIST 

(2) MACC 

point-to-area 

(point-to-volume) 

representativeness 

the probability that a point measurement lies within a 

specific range of area-average (volume-average) 

concentration value 

Nappo 

positional 

accuracy 

closeness of coordinate value to the true or accepted 

value in a specified reference system  
ISO:19116 

precision 

(1) measure of the repeatability of a set of 

measurements. Note that precision is usually 

expressed as a statistical value based upon a set of 

repeated measurements such as the standard 

deviation from the sample mean 

(2) closeness of agreement between indications or 

measured quantity values obtained by replicate 

measurements on the same or similar objects under 

specified conditions 

(1) ISO:19116 

(2) VIM/ISO:99 

procedure specified way to carry out an activity or a process ISO:9000 

process 
set of interrelated or interacting activities that use 

inputs to deliver an intended result 
ISO:9000 

process validation 

establishing documented evidence of a high degree of 

assurance that a specific process will consistently 

produce a product meeting its pre-determined 

specifications and quality characteristics 

CDRH 

quality 
degree to which a set of inherent characteristics of an 

object fulfils requirements 
ISO:9000 

quality assurance 
part of quality management focused on providing 

confidence that quality requirements will be fulfilled 

CEOS/ISO:19159, 

ISO:9000 

quality assessment 

term referring to the derivation of quality indicators 

providing sufficient information to assess whether 

quality requirements are fulfilled 

CEOS 

quality control 

(QC) 

(1) QC refers to the activities undertaken to check and 

optimise accuracy and precision of the data after its 

collection 

(2) part of quality management focused on fulfilling 

quality requirements 

(1) 

CEOS/ISO:19159 

(2) ISO:9000 
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quality indicator 

(QI) 

a means of providing a user of data or derived product 

with sufficient information to assess its suitability for a 

particular application. This information should be 

based on a quantitative assessment of its traceability 

to an agreed reference or measurement standard 

(ideally SI), but can be presented as a numeric or a text 

descriptor, provided the quantitative linkage is 

defined. 

QA4EO 

radiometric 

calibration 

a determination of radiometric instrument 

performance in the spatial, spectral, and temporal 

domains in a series of measurements, in which its 

output is related to the true value of the measured 

radiometric quantity 

NIST 

random error 

(1) component of measurement error that in replicate 

measurements varies in an unpredictable manner; 

note that random measurement error equals 

measurement error minus systematic measurement 

error 

(2) component of forecast error that varies in an 

unpredictable manner 

(1) VIM/ISO:99 

(2) MACC 

relative standard 

uncertainty 

standard measurement uncertainty divided by the 

absolute value of the measured quantity value 
VIM/ISO:99 

repeatability 

measurement precision under set of conditions 

including the same measurement procedure, same 

operator, same measuring system, same operating 

conditions and same location, and replicated 

measurements over a short period of time 

VIM/ISO:99 

representativeness 

the extent to which a set of measurements taken in a 

given space-time domain reflect the actual conditions 

in the same or different space-time domain taken on a 

scale appropriate for a specific application 

Nappo 

reproducibility 

measurement precision under a set of conditions 

including different locations, operators, and measuring 

systems 

VIM/ISO:99 
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resolution 

(1) smallest change in a quantity being measured that 

causes a perceptible change in the corresponding 

indication 

(2) the least angular/linear/temporal/spectral distance 

between two identical point sources of radiation that 

can be distinguished according to a given criterion 

(3) the least vertical/geographical/temporal distance 

between two identical atmospheric features that can 

be distinguished in a gridded numerical product or in 

time series of measurements; resolution is equal to or 

coarser than vertical/geographical/temporal sampling 

of the grid or the measurement time series 

(1) VIM/ISO:99 

(2) NIST 

(3) MACC 

stability 
Property of a measuring instrument, whereby its 

metrological properties remain constant in time 
VIM/ISO:99 

systematic error 

component of measurement error that in replicate 

measurements remains constant or varies in a 

predictable manner 

VIM/ISO:99 

system set of interrelated or interacting elements ISO:9000 

traceability 

(1) (metrological traceability) property of a 

measurement result relating the result to a stated 

metrological reference (free definition and not 

necessarily SI) through an unbroken chain of 

calibrations of a measuring system or comparisons, 

each contributing to the stated measurement 

uncertainty 

(2) ability to trace the history, application or location of 

an object, a product or a service 

(1) VIM/ISO:99 

(2) ISO:9000 

traceability chain 

sequence of measurement standards and calibrations 

that is used to relate a measurement result to a 

reference 

VIM/ISO:99 

uncertainty 

non-negative parameter characterizing the dispersion 

of the quantity values being attributed to a 

measurand, based on the information used 

VIM/ISO:99 
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validation 

(1) the process of assessing, by independent means, 

the quality of the data products derived from the 

system outputs 

(2) verification, where the specified requirements are 

adequate for an intended use 

(3) confirmation, through the provision of objective 

evidence, that the requirements for a specific intended 

use or application have been fulfilled 

(4) the process of assessing, by independent means, 

the degree of correspondence between the value of 

the radiometric quantity derived from the output 

signal of a calibrated radiometric device and the actual 

value of this quantity. 

(5) confirmation by examination and provision 

of  objective evidence that specifications conform to 

user needs and intended uses, and that the particular 

requirements implemented through software can be 

consistently fulfilled 

(1) 

CEOS/ISO:19159 

(2) VIM/ISO:99 

(3) ISO:9000 

(4) NIST 

(5) CDRH 

verification 

(1) provision of objective evidence that a given item 

fulfils specified requirements; note that, when 

applicable, measurement uncertainty should be taken 

into consideration. 

(2) confirmation, through the provision of objective 

evidence, that specified requirements have been 

fulfilled 

(3) the provision of objective evidence that the design 

outputs of a particular phase of the software 

development life cycle meet all of the specified 

requirements for that phase 

(1) VIM/ISO:99 

(2) ISO:9000 

(3) CDRH 

vicarious 

calibration 

post-launch calibration of sensors that make use of 

natural or artificial sites on the surface of the Earth 
CEOS/ISO:19159 

 

 


