

FIDUCEO has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under Grant Agreement no. 638822

Colocation day GAIA-CLIM – FIDUCEO

Aerocol closure for AVHRR (FIDUCEO)

Thomas Popp (DLR)

Objectives / background

AVHRR aerosol CDR

- Total Aerosol Optical Depth (AOD)
- Over land Europe / Northern Africa
- 2002 2012
- Comprehensive uncertainty characterization

Background

- AOD retrieval is ill-posed inversion problem
- AVHRR is a weak instrument for aerosol (calibration, few channels)
- AVHRR offers potential long historic record to 1980s
- Uncertainty characterization is crucial for valuable CDR
- Build on ESA Aerosol_cci legacy and develop approaches further
- Build on DLR-internal TIMELINE project

Initial example

16.08.2008 (NOAA-18)

Aerosol retrieval signal for aerosol optical depth AOD or au

Traceability chain

Simple algorithm fitting single channel retrieval

• $R_{TOA} = \frac{\pi L}{\mu_0 E_0}, \mu_0 = \cos(\theta_0)$

Retrieval operator

•
$$AOD_{670} = f(R_{TOA}; \theta_S, \theta_0, \Delta \varphi; Alb_{surf}, aerosol_{type}; \tau_i^{trace \ gases}; h_{surf})$$

Principle of aerosol retrieval

Single channel LUT inversion at best-suited dark fields

Satellite signal "measures" non-linear geometry-dependant combination of

- aerosol extinction / AOD
- phase function / single scattering albedo
- surface reflectance

Needed auxiliary information

aerosol type (climatology, ensemble)

surface brightness

Additional steps

selection of dark fields / interpolation between dark fields

cloud masking (combined threshold tests)

Block diagram

Traceability chain

Main functional dependancy

- $AOD_{670} = f(R_{TOA}; Alb_{surf})$
- Parameterized with step-wise 2nd order polynomials
- For dark fields

Dark field method

Parameterization

- $Alb_{surf}^{670} = a R_{TOA}^{1670} + b$
- with a = -1.5 NDVI +1.5 and b = 0.1 NDVI 0.01

Sources of uncertainty

Source of uncertainty	Description	Qualitative estimate of contribution	
Cloud screening and safety zone	Capabilities depend on available spectral range (e.g. thermal bands	High for UV/VIS sensors, medium for	
	are important); safety zone also masks elevated AOD around clouds	stratospheric algorithms	
Overpass time	Polar orbiting sensors provide typically one or two sun-synchronous	High when comparing to different sensors or	
	overpass times per day	against models	
Land surface reflectance (BRDF)	Can be estimated from vegetation index and/or mid-infrared bands,	High for nadir-only sensors, with larger	
	drawn from a climatology or ECV, or retrieved alongside AOD from	uncertainty at higher reflectances	
	multi-view data		
Ocean surface reflectance	Estimated using white caps parameterisation and possibly a	Medium	
	climatology of ocean colour		
Calibration	Absolute radiance calibration is critical with spectral calibration	Medium	
	being less critical due to the broad-band features considered		
Aerosol optical properties	This includes spectral extinction, absorption, phase function and	Medium to high for sensors with low	
	shape (degree of sphericity)	information content, low for AOD < 0.15	
Vertical aerosol profile	Different assumptions are made for different aerosol types but	Medium for UV observations and absorbing	
	sensitivity at TOA is small for VIS/IR sensors, increasing in the TIR	aerosol, low otherwise	
Directional reflectance ratio	Ratio between nadir and forward views is transferred from mid-	Medium for multi-view sensors	
	infrared to visible bands		
Pixel size	Ranges from 1x1 km ² for radiometers to 16x7 km ² for polarization	Medium when pixels dimension approach 50	
	instruments to approximately 0.25x0.5° for spectrometers	km (approximate scale of aerosol variation)	
Temperature vertical profiles	Usually of very high accuracy and precision, but might be	Low to medium (only for TIR sensors)	
	significantly affected by the presence of high absorbing aerosol load		
Trace gas concentration profiles	Critical absorption bands are usually avoided	Low	
Radiative transfer forward model	Typical accuracy < 1%	Low	
Look-up table discretization	Uncertainty often a function of the number of discretization points	Low	
Wind speed	Used to estimate ocean reflectance	Low	
Sampling	Practically all sensors under-sample the aerosol fields in time;	Depends strongly on the repeat cycle of the	
	different samplings lead to bias between different products	sensor and its swath width	
Aggregation to 10x10 km ²	Aims to improve the signal-to-noise ratio and exclude outliers	Reduces random error (but not systematic) and	
		may decrease representivity of data	

Uncertainties

On pixel-level (dominant terms)

$$\sigma_{AOD} = \sqrt{\left(\frac{\partial AOD}{\partial R_{TOA}} \sigma R_{TOA}\right)^{2} + \left(\frac{\partial AOD}{\partial Alb_{surf}} \sigma Alb_{surf}\right)^{2} + \left(\sigma_{AOD}^{ensemble}\right)^{2} + \sigma^{2}(0)}$$

On aggregated levels (to be analysed)

- trace gas absorption correction
- altitude dependent Rayleigh scattering correction
- vertical layering of AOD
- look-up table error versus full radiative transfer calculations
- interpolation errors between the distinct angular values
- interpolation values between the distinct aerosol types
- Consider correlation structures of lv1 and auxiliary error propagation

Aerosol sensitivity

Aerosol sensitivity depends on geometry, AOD, aerosol type Low sensitivity cases need to be excluded / weighted

Aerosol type ensemble

Ensemble of mixtures of 4 "extreme" components Defined by AERONET (optical properties) and AEROCOM model median

Fine mode fraction

Fraction of the less absorbing component in the fine mode

Fraction of dust in the coarse mode

DLR

AOD550 (not used as a priori)

Ensemble of different aerosol mixtures

	All fractions are for AOD at 550 nm			
Mix no.	(FMWA+FMSA)/	FMWA / (FMWA+FMSA)	SALT / (SALT+DUST)	Layer (km)
	(FMWA+FMSA+SALT+DUST)			
1	1	1	-	0-2
2	1	0.88	-	0-2
3	1	0.77	-	0-2
4	1	0.66	-	0-2
5	1	0.55	-	0-2
6	1	0.44	-	0-2
7	1	0.33	-	0-2
8	1	0.22	-	0-2
9	1	0.11	-	0-2
10	1	0	-	0-2
11-20	0.8	as 1-10	0	0-2
21-30	0.8	as 1-10	0.5	0-2
31-40	0.8	as 1-10	1	0-2
41-50	0.6	as 1-10	0	0-2
51-60	0.6	as 1-10	0.5	0-2
61-70	0.6	as 1-10	1	0-2
71-80	0.4	as 1-10	0	2-4
81-90	0.4	as 1-10	0.5	0-2
91-100	0.4	as 1-10	1	0-1
101-110	0.2	as 1-10	0	2-4
111-120	0.2	as 1-10	0.5	0-2
121-130	0.2	as 1-10	1	0-1

DLR

Timeline

AVHRR aerosol CDR

- Task starts 3/2017
- CDR delivery 6/2018
- Validation with AERONET 10/2018
- Comparison to SEVIRI AOD 10/2018
- 2nd FIDUCEO aerosol product from MVIRI: also benefits from collaboration

Benefit from FIDUCEO

- Use FCDR lv1 uncertainties
- Consider correlations (main classes)
- Improve lv2-lv3 uncertainty characterization
- Pragmatic solutions (limitations of runtime, auxiliary knowledge)
- Focus on dominant uncertainty sources (on all scales)

Common interest with GAIA-CLIM and AEROSAT

AOD validation itself

• Is done with AERONET (low uncertainty)

Better characterisation of aerosol type uncertainties

- Comparison to lidar aerosol type information
- Evaluate impact on retrieved AOD of assumptions on aerosol type
- Help to optimize the ensemble definition
 - Appropriate variance in model ensemble

Robust correction of overlap issue in lidar – satellite (column) comparisons Contribute to AEROSAT (consistent nomenclature) Develop uncertainty methodology further for aerosol retrieval community

