

GAIA-CLIM WP1.2 "Mapping geographical capabilities"

Lead: CNR

Involved: BIRA, MO, BKS, KNMI, FMI, UNIBRE, MPG, UHEL Start: month 1; Complete: month 18

Consiglio Nazionale delle Ricerche Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA) fabio.madonna@imaa.cnr.it

> **** * * ***

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 640276.

www.gaia-clim.eu

WP1.2: Objectives

- To provide a geographical identification, at European and at the global scale, of current surface-based, balloon-based and airborne observing capabilities on an ECV by ECV basis for parameters which can be obtained using space-based observations from past, present and planned satellite missions.
- Preparation for the creation of a "Virtual Observatory" of ground based and satellite data by establishing common formats for metadata.

Task 1.2: Geographical capabilities mapping

- Review at the global scale of 54 plausible networks and 2 aircraft permanent infrastructures for EO Characterisation
- Complete discovery metadataset (ISO19115 format) collected for all the stations belonging to 49 of the 54 networks.
- Observation metadata format identified for the VO: Unified metadata format (UMF) with conversion tool to WIGOS, CFNetCDF and NASA-Ames formats.
- Data and metadata test cases provided for EARLINET, NDACC ozonesondes, GRUAN.

Maturity matrix collection

In addition, the discovery metadataset includes the scores of all the maturity matrices (e.g. deliverable D1.3) collected for each of the reviewed networks:

- Collected scores are representative of the level of maturity of each network (i.e core stations and operations).
- A further granuality of the assessment would be possible but not practical within the time and resource constraints available.
- It has not been possible to classify a small number of additionally identified potential target networks using the MMA. In most cases this was because network PIs have not yet been forthcoming with the required information to complete the assessment. However, overall about 75% of the expected assessments have been successfully collected and statistically investigated.

Maturity Matrix Assessment: statistics

The maturity matrix assessment applied to the networks reviewed under Task 1.2 shows an overall medium-high level of maturity (scores > 4) in the following categories of the maturity matrix:

- Metadata: improvements must still be targeted at the creation and curation of collection level information (e.g. enhanced or complete discovery metadata);
- Sustainability: continued operations can be envisaged given national and international funding;
- Documentation: improvements required towards the adoption of formal measurement user guidance, the regular update by data providers with instrument/method of measurement updates and/or new validation results, the availability in peer-reviewed literature of measurement description and examples of data usage;

The reviewed networks have an overall medium level of maturity (scores 3 - 4) in the following categories:

- Uncertainty: robust uncertainty quantification and comparability must be improved to be considered reference quality measurements; more mature approach is adopted in the frame of networks measuring aerosols, water vapour and ozone;
- Public access, feedback and update: heterogeneous scenario, a large effort must be spent to assess shortcomings in user feedback mechanisms and version control.

Maturity matrices

Measurement type		surface	profile	profile	column	column	column	surface	profile	column	profile	surface	column	column	corumn	column	profile	surface	priorit a	tower	column surface	surface	profile	profile, column	profile, column	profile	profile	column	surface	aircraft	profile	surface	surface	profile	profile,		surface, tower	column	column	column	profile	surface	column, profile	.u	
ECV		AEROSOL, NOZ	AEROSOL	AEROSOL AFROSOI	WATER VAPOR AEROSOL	WATER VAPOR AEROSOL	WATER VAPOR	TEMP ERATURE	SAUNITY SAUNITY	AERO SOL, O3	AEROSOL AEROSOL	AEROSOL	WATER VAPOR AEROSOL	WATER VAPOR	AERUSUL	WATER VAPOR TEMPERATURE	WATER VAPOR	TEMP ERATURE TEMP ERATURE,	WATER VAPOR	CO, CO2, CH4	WATER VAPOR AEROSOL	TEMP ERATURE,	MAIEN VAPON AEROSOL	TEMPERATURE, WATER VAPOR	CO,CH4,NO2,O3 ,WATER VAPOR	WATER VAPOR	03	03	03	03	TEMPERATURE, WATER VAPOR	TEMP ERATURE	C02	03	3,TEMP ERATURE WATER VAPOR	AEROSOL, CO2, C	0,CH4, NU2, U3, I EMPERATURE, WATER VAPOR	WATER VAPOR	AEROSOL	C02,CH4	03	TEMP ERATURE, WATER VAPOR	03	x-asse ssment,	ociated
	Security	-	-	<u>ч</u>				5			2 2	4		4	L.	2			r		5		9	2	-						4	¢.		2	4			5		-	-	\$		natri	055
	Portability and Numerical Reproducibility	-	۴	9				4			9 2		<mark>-</mark> ,	٥		ى		e	,		-		з	4	m						e	<u>e</u> .		5	9			9		5	2	2	ю	aturity-n	CVs and
	Software Documentation	2	2	9				9		9	<mark>و</mark>		- '	٥		9		y y	,	•	-		3	4	4						9	5		9	9			9	4	2	2	9	4	age/m	those I
SOFTWARE READINESS	Coding standards	m	5	9				9	9	1	9 00		-				m	0 0		•	-		2	4	m				1		9	9		9				9	5	m	5	5	4	d/n	for
	Programmatic support	9	9	9	n I	n I	5	9	9	9	9 9	5	9 •	4 4	n 1	2		un u	>	<u>د</u>	9 y	4	5	9	4	4	4	4	4	4	4	5	m	2	4		2	5	9	2	e	9	4	m.e	iork
	Scientific / expert support	9	5	2	ι α	n I	9	9	9	5	2 2	3	ى ي	n u	n •	4	· و	4 4		ις ι	4	2	5	5	e	5	5	5	9	5	Э	4	5	e	2		4	4	5	9	e	9	е	aia-cli	h netw
SUSTAINABILITY	Siting environment	5	5	9	ہ ا	י	9	4		9	9 9	9	6	<u>ہ</u> م	ŧ (• ·	4	m 4	>	5	9 9	9	9	9	4	5	- 9	5	5	5	e	e	2	4	5		\$	9	9	e	5	9	4	W.9	eac
	Public and commercial exploitation	4	4	4	ι α	۰ n	5	9	m	т н	5	4	<u>ب</u>	2 0	v 0	m	4	~ ~	,		9 4	e	e	2	ø						m	m		9	2		ۍ	Э	m		5	4	9	ww//:0	across
USAGE	Research	5	3	5	ŝ	ہ ا	2	S	5	5	9	2	۰ ک	4 7	0 4	2	4	4 <	•	<u>с</u> ,	2	2	9	9	9	5	5	5	9	5	4	2	5	9	4		4	5	4	5	5	4	9	http	ity o
	Long-term data preservation	9	5	9	s i	ہ n	2	9			<mark>ی</mark> و	5	ι G	r r	0 0	m	9	~ ~	1	ιc ι	с 2		9	4	4	5	5	5	5	5	2	2	5	2	e		ۍ	e	5	4	4	9	4	LIM,	matur
	Version control	m	e	9	ς, ι	n n	2	9		5	6 4		5 0	τ ι	C	m	9	0 0	1		د		9	m	5	4	m	4	2	4	2	2	m	4	e		4	Э	2	9	4	9	e	A-C	Ea
	Updates to Record	4	5	5	9 7	•	9	9	9	9	5 4	5	9 0	ν <	t (9	9	9 Y	2		5 5		2	4	5	5	5	5	4	5	9	9	4	5	3		6	9	9	5	4	9	4	GA	syst
	User Feedback Mechanism	4	4	<mark>ں</mark> 0	s i	ہ ،	2	2	4		9 0	2	ه و	2 0	v 0	m	9 I	~ ~	>	2	9 m	2	5	4	9	4	4	4	4	4	2	2	9	S	2		4	e	2	4	5	2		ces of	ment
JBLIC ACCESS, FEEDBACK, AND UPDATE	Public Access/Archive	4	9	ں و	ι, α	۰ n	5	4	9	9	0 4	9	69 I	n -	+ 4	• •	4	0 U	,		9 9	-	9	4	ъ	5	4	5	4	4	9	9	4	9	5		9	9	9	5	4	9	5	idsno	eu .
	Routine Quality Monitoring	4	4	2	، م	، م	9	9	9	9	2 2	9	ں <u>و</u>	n u	n 1	2	9	2 2	, ,	4	99	2	9	4	4	4	4	4	4	4	9	4	5	9	2		Ş	5	9	æ	e	9	4	er the	cal me -clim.
	Uncertainty quantification	5	5	2	m (ו מ	m	e P	2	9 .	2 2	e	s o	n c	v 0	m .	4	m r	>	4	4	-	9	4	4	2	-	2	-	2	e	2	4	4	m		m	Э	m	5	4	5	4	ed und	of typi w.gaid
	Comparability	4	4	4	s '	r n	5	2	e	9	4 4	e	<u>ه</u> .	4 u	n (ო ს	9	m m	5	ις L	0 m	2	e	m	4	4	m	4	e	5	e	2	5	ۍ	4		4	3	4	4	m	9	4	Drm	cts ww
UNCERTAINTY CHARACTERISATION	Traceability	4	2	ις Ω	ι Ω	، م	<u>،</u>	0	4	9	s s	4	ιΩ ι	o –	4 •	4	4	m r	>	ις ι	ο v	-	4	4	5	m	m	e	2	ç	e	2	2	m	5		4	4	5	9	4	5	4	e perfi	e aspe CLIM ,
	Formal Measurement series User Guidance	4	4	ر ع	ις τ	د ۱	2	5	4	2	<mark>و ک</mark>	Э	9	<u>ہ</u>	ŧ .	4	9	~ ~	,	2	3 6	2	9	5	۵	9	e	9	2	4	e	2	2	9	2		4	4	9	5	Э	9	4	ie wer	tifiabl GAIA-
	Formal Validation Report	4	4	9	• ۲	4	4	9	4	5	ی ہ	2	• ک	4 д	• •	4	9 I	m r	•	s r	2	-	9	5	2	9	4	9	e	4	m	2	5	2	4		4	4	5	4	4	9	5	rt abov	ant to
DOCUMENTATION	Formal description of measurement methodology	3	5	9	ہ و	•	9	9	9	2	4	5	2	r u	n (· ی	، ي	m u	,	4	5	۲	9	4	e	5	æ	5	2	9	5	2	m	2	e		m	5	4	9	4	9	5	arried ou	ss certau are relevi
	File level	5	5	9	s s	، م	9	2	9	5	o o	5	<mark>ى</mark>	n 4	• •	4	9	y u	2	ιΩ ι	s s	4	9	5	5	50	5	2	2	5	5	5	2	4	e		9	4	5	5	m	5	5	ts c	isse not c
	Collection level metadata (including change records)	9	5	9	m	י מ	m	9	9	9	ى 0	4	9 .	4 c	7	9	9	<u>ن</u> م	,	e (4 6	4	4	4	m	Э	ñ	ю	2	e	4	9	m	9	4		4	9	4	9	2	9	4	essmen	They c stems th
METADATA	Standards	5	5	9	4 .	4 .	4	5	9	9	4	Э	5	5	t (9	5	نه ن	,	<u>ن</u> 0	3 6	e	5	4	4	5	5	5	2	5	9	9	4	4	e		4	9	3	9	3	G	5	055	016. t sys
NETWORK		IRIS surface	ACTRIS profiles	ADNET	RONET PH	OTONS SNET CSIR	0	AMeDAS	ARGO	BSRN	EMEP	EPA	EUREF	ROSKYRAD	GAWPER	GPSMET	GRUAN	GSN	C finchuling	InGOS)	IGS MPROVE	IESONET	MPLnet	1WRnet	NDACC	DAA ESRL	A ESRL	3 dobson	DAA ESRL 3 in-situ	DAA ESRL 3 aircraft	RAOB	RBSN	RIPPS CO2 program	SHADOZ	SKYNET		SMEAR	UOMINET	SURFRAD	TCCON	TOLNET	USCRN	woubc	e maturity	otember 21 asuremen

www.gaia-clim.eu

Maturity of existing capabilities

Upper left panel (a), water vapour networks classified as "Comprehensive" according to the MMA for the category "Uncertainty";

upper right panel (b), networks classified as "Baseline";

lower left panel (c), networks classified as "Reference";

lower right panel (d), all the networks measuring water vapour at the global scale.

www.gaia-clim.eu

www.gaia-clim.eu

Metadata

Standard

5

Collection leve

5

File level

Usage

Research

6

Public and commercial exploitation

6

Siting environment

2

Scientific and expert support

5

Programmatic support

Redundancy exercise

Compilation of the matrix for the same network by at least three persons for five networks (EARLINET, GRUAN, TCCON, AERONET, NDACC), the most well represented by the GAIA-CLIM partners.

An average uncertainty in the attribution of the maturity matrix scores among the selected compilers of ±1 for a given sub-category. This can be considered as the minimum possible quantification of the level of objectivity of the MMA.

Metadata	Documentation	Uncertainty characterization	Public access, feedback and	Usage	Sustainability	Software (optional
			update	-		
Standards	Formal Description of	Traceability	Access	Research	Siting environment	Coding standards
6454	Measurement Methodology	6555	5554	5665	4234	1543
0,4,0,4	5, 6, 6, 3	0, 0, 0, 0	5, 5, 5, 4	5, 5, 5, 5	4, 2, 0, 4	1, 0, 4, 0
Collection level	Formal Validation Report	Comparability	User feedback mechanism	Public and commercial exploitation	Scientific and expert support	Software documenta
6, 4, 6, 3	6, 5, 4, 1	5, 5, 4, 4	4, 4, 4, 6	6, 6, 5, 5	5, 5, 5, 3	4, 4, 4, 2
File level	Formal Measurement Series User	Uncertainty Quantification	Updates to record		Programmatic support	Portability and numer
	Guidance	EAEE	4455		1124	reproducibility
5, 5, 5, 5	6, 5, 5, 6	5,4,5,5	4, 4, 5, 5		1, 1, 2, 4	5, 5, 3, 3
		Routine Quality Management	Version control			Security
		5, 4, 5, 3	6, 5, 6, 5			1, /, 2, 1
			Long term data preservation			
			5, 6, 6, 4			

Public access, feedback and

Access

5

User feedback mechanisn

4

Updates to record

5

Version control

6

Long term data preservation 4

Suggested rating based on results from redundancy analysis and further investigation (see comments above)

Uncertainty characterization

Traceabilit

5

Comparability

Uncertainty Quantification

Routine Quality Management

5

Documentation

Formal Description of Measurement Methodology

5

Formal Validation Report

5

ormal Measurement Series Use

Guidance

5

Scores of the four maturity

"Official" maturity matrix provided by TCCON applying the described MMA

Coding standards

4

Software documentatio

4

Portability and numerical

reproducibility

5

Security

1

Geographical analysis

Density of measurements in 1000 km by 1000 km boxes (about 10°x10° degrees at the equator) for each atmospheric ECV and by different measurement types has been calculated for the number of stations available over seven continental zones: Africa, Europe (includes European North Pole areas), Asia, North America (includes Greenland), South America, Oceania and Antarctica. The cells in red are those where a density less than 1 station per box is found.

		Aerosol			CO2		C	0				
	column	profile	surface	column	profile	surface	profile	surface	column	profile	surface	tower
Africa	3.54	0.10	0.33	0.07	0.00	0.20	0.07	0.20	0.13	0.07	0.20	0.00
Europe	22.62	7.98	26.26	0.91	0.00	2.63	0.61	3.13	1.51	0.61	2.93	1.11
Asia	9.09	1.20	0.89	0.11	0.02	0.27	0.07	0.31	0.16	0.07	0.31	0.00
North America	19.36	0.62	112.63	0.25	0.87	1.49	1.03	14.37	0.41	1.03	1.40	0.00
South America	4.92	0.95	0.06	0.00	0.06	0.28	0.06	0.17	0.00	0.06	0.17	0.00
Oceania	4.52	0.26	4.13	0.39	0.00	1.29	0.39	1.42	0.77	0.39	1.03	0.00
Antarctica	0.98	0.24	0.33	0.00	0.00	0.16	0.00	0.08	0.00	0.00	0.08	0.00
	NO2							Water Vapor				
		NO2			03		Tempe	erature		Water	Vapor	
	column	NO2 brofile	surface	column	03	surface	Tempe brotile	surface surface	column	Water elijoud	Vapor sntface	tower
Africa	uun columu col	NO2 Profile 0.07	Surface Surface	uunnoo 1.22	O3 Profile 0.76	surface 00.00	Tempe Jucije 8.04	erature enders	uumpoo 5.99	Water eijo bud 8.04	Vapor Sartace 0.00	tower 08.0
Africa Europe	0.07 0.71	NO2 Jacuary D.07 0.71	0.33 2.93	1.22 19.90	03 ajjod 0.76 7.88	0.30 0.40	Tempe aijjo 8.04 23.13	29.77 29.77	5.99 60.49	Water aijood 8.04 21.81	Vapor 0.00 0.20	0.86 22.02
Africa Europe Asia	0.07 0.71 0.22	NO2 eijjo 0.07 0.71 0.22	0.33 2.93 0.40	1.22 19.90 3.51	03 ejjo 0.76 7.88 1.49	0.30 0.40 0.31	Tempe aligo 8.04 23.13 12.53	29.77 100.49 63.49	5.99 60.49 11.67	Water aligo 8.04 21.81 12.49	Vapor 0.00 0.20 0.20	0.86 22.02 2.02
Africa Europe Asia North America	0.07 0.71 0.22 0.08	NO2 ajjo 0.07 0.71 0.22 0.08	0.33 2.93 0.40 18.79	1.22 19.90 3.51 5.00	03	0.30 0.40 0.31 61.06	Big Big <thbig< th=""> <thbig< th=""> <thbig< th=""></thbig<></thbig<></thbig<>	29.77 100.49 63.49 46.98	5.99 60.49 11.67 77.29	Water aligo 8.04 21.81 12.49 11.93	Vapor 0.00 0.20 0.20 13.34	0.86 22.02 2.02 8.01
Africa Europe Asia North America South America	0.07 0.71 0.22 0.08 0.11	NO2 ajju 0.07 0.71 0.22 0.08 0.11	0.33 2.93 0.40 18.79 0.00	1.22 19.90 3.51 5.00 1.96	03 aligo 0.76 7.88 1.49 5.33 1.34	0.30 0.40 0.31 61.06 0.00	Tempe aligo 8.04 23.13 12.53 11.60 6.15	29.77 29.77 100.49 63.49 46.98 29.96	5.99 60.49 11.67 77.29 9.00	Water aligo 8.04 21.81 12.49 11.93 6.15	Vapor	0.86 22.02 2.02 8.01 1.51
Africa Europe Asia North America South America Oceania	0.07 0.71 0.22 0.08 0.11 0.39	NO2 eijjo 0.07 0.71 0.22 0.08 0.11 0.39	0.33 2.93 0.40 18.79 0.00 0.26	1.22 19.90 3.51 5.00 1.96 5.03	03 9 1 0.76 7.88 1.49 5.33 1.34 4.13	0.30 0.40 0.31 61.06 0.00 0.39	Tempe a) b) 8.04 23.13 12.53 11.60 6.15 12.64	29.77 100.49 63.49 46.98 29.96 40.64	5.99 60.49 11.67 77.29 9.00 16.26	Water alight bod 8.04 21.81 12.49 11.93 6.15 13.16	Vapor 0.00 0.20 0.20 13.34 0.00 0.52	0.86 22.02 2.02 8.01 1.51 3.74

Task 1.4 and task 1.5 will assess these geographical gaps on a robust scientific basis.

Deliverables

- D1.1 Initial input from WP1 to the gap analysis and impacts document (CNR; M4)
- D1.2 Modelling studies of the impacts of gaps experimental design (KIT; M7)
- D1.3 Report on system of systems approach adopted and rationale (NUIM; M9)
- D1.4 Review of and input to Gap Analysis and impacts document aspects relevant to WP1 (CNR; M16)
- D1.5 Summary of initial model-based study results and plans for remainder of project (KIT; M16)
- D1.6 Report on data capabilities by ECV and by system of systems layer for ECVs measurable from space. (CNR; M18)
- D1.7 Report on the collection of metadata from existing network and on the proposed protocol for a common metadata format (CNR; M18)
- D1.8 Provision of a 3D tool for the online visualization of existing measurements (CNR; M24)
- D1.9 Final version of a 3D tool for the online visualization of existing measurements (CNR; M30)
- D1.10 Report on the scientific assessment of gaps using a statistical approach based on heteroskedastic functional regression (UniBergamo; M34)
- D1.11 Report on the scientific assessment of gaps based on forward, inverse, and data assimilation modelling frameworks, (KIT, M34)

No	Tosk		20	15			20	16		2017				
INO.	Task	Ι	II	III	IV	Ι	II	III	IV	Ι	II	III	IV	
WP1	Geographical Capabilities Mapping		D				D						D	
T1.1	Define system of system approach			D										
T1.2	Mapping geographical capabilities						DD							
T1.3	3D tool design for online visualisation								D		D			
T1.4	Statistical assessment of gaps												D	
T1.5	Model-based assessment of gaps		D				D						D	

www.gaia-clim.eu

- Paper by Thorne et al. close to submission in GI EGU journal (largely based on the work reported in the deliverable D1.6)
- C3S-BARON will establish this work as a permament service for Copernicus but for a restricted ensemble of networks

QUESTIONS?

www.gaia-clim.eu

GAIA-CLIM GA, Reading, 6 Feb. 2017

